Not enough data to create a plot.
Try a different view from the menu above.
Rathbun, Ethan
Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense
Singh, Aditya Vikram, Rathbun, Ethan, Graham, Emma, Oakley, Lisa, Boboila, Simona, Oprea, Alina, Chin, Peter
Recent advances in multi-agent reinforcement learning (MARL) have created opportunities to solve complex real-world tasks. Cybersecurity is a notable application area, where defending networks against sophisticated adversaries remains a challenging task typically performed by teams of security operators. In this work, we explore novel MARL strategies for building autonomous cyber network defenses that address challenges such as large policy spaces, partial observability, and stealthy, deceptive adversarial strategies. To facilitate efficient and generalized learning, we propose a hierarchical Proximal Policy Optimization (PPO) architecture that decomposes the cyber defense task into specific sub-tasks like network investigation and host recovery. Our approach involves training sub-policies for each sub-task using PPO enhanced with domain expertise. These sub-policies are then leveraged by a master defense policy that coordinates their selection to solve complex network defense tasks. Furthermore, the sub-policies can be fine-tuned and transferred with minimal cost to defend against shifts in adversarial behavior or changes in network settings. We conduct extensive experiments using CybORG Cage 4, the state-of-the-art MARL environment for cyber defense. Comparisons with multiple baselines across different adversaries show that our hierarchical learning approach achieves top performance in terms of convergence speed, episodic return, and several interpretable metrics relevant to cybersecurity, including the fraction of clean machines on the network, precision, and false positives on recoveries.
Adversarial Inception for Bounded Backdoor Poisoning in Deep Reinforcement Learning
Rathbun, Ethan, Amato, Christopher, Oprea, Alina
Recent works have demonstrated the vulnerability of Deep Reinforcement Learning (DRL) algorithms against training-time, backdoor poisoning attacks. These attacks induce pre-determined, adversarial behavior in the agent upon observing a fixed trigger during deployment while allowing the agent to solve its intended task during training. Prior attacks rely on arbitrarily large perturbations to the agent's rewards to achieve both of these objectives - leaving them open to detection. Thus, in this work, we propose a new class of backdoor attacks against DRL which achieve state of the art performance while minimally altering the agent's rewards. These "inception" attacks train the agent to associate the targeted adversarial behavior with high returns by inducing a disjunction between the agent's chosen action and the true action executed in the environment during training. We formally define these attacks and prove they can achieve both adversarial objectives. We then devise an online inception attack which significantly out-performs prior attacks under bounded reward constraints.
SleeperNets: Universal Backdoor Poisoning Attacks Against Reinforcement Learning Agents
Rathbun, Ethan, Amato, Christopher, Oprea, Alina
Reinforcement learning (RL) is an actively growing field that is seeing increased usage in real-world, safety-critical applications -- making it paramount to ensure the robustness of RL algorithms against adversarial attacks. In this work we explore a particularly stealthy form of training-time attacks against RL -- backdoor poisoning. Here the adversary intercepts the training of an RL agent with the goal of reliably inducing a particular action when the agent observes a pre-determined trigger at inference time. We uncover theoretical limitations of prior work by proving their inability to generalize across domains and MDPs. Motivated by this, we formulate a novel poisoning attack framework which interlinks the adversary's objectives with those of finding an optimal policy -- guaranteeing attack success in the limit. Using insights from our theoretical analysis we develop ``SleeperNets'' as a universal backdoor attack which exploits a newly proposed threat model and leverages dynamic reward poisoning techniques. We evaluate our attack in 6 environments spanning multiple domains and demonstrate significant improvements in attack success over existing methods, while preserving benign episodic return.
Attacking the Spike: On the Transferability and Security of Spiking Neural Networks to Adversarial Examples
Xu, Nuo, Mahmood, Kaleel, Fang, Haowen, Rathbun, Ethan, Ding, Caiwen, Wen, Wujie
Spiking neural networks (SNNs) have attracted much attention for their high energy efficiency and for recent advances in their classification performance. However, unlike traditional deep learning approaches, the analysis and study of the robustness of SNNs to adversarial examples remain relatively underdeveloped. In this work, we focus on advancing the adversarial attack side of SNNs and make three major contributions. First, we show that successful white-box adversarial attacks on SNNs are highly dependent on the underlying surrogate gradient technique, even in the case of adversarially trained SNNs. Second, using the best surrogate gradient technique, we analyze the transferability of adversarial attacks on SNNs and other state-of-the-art architectures like Vision Transformers (ViTs) and Big Transfer Convolutional Neural Networks (CNNs). We demonstrate that the adversarial examples created by non-SNN architectures are not misclassified often by SNNs. Third, due to the lack of an ubiquitous white-box attack that is effective across both the SNN and CNN/ViT domains, we develop a new white-box attack, the Auto Self-Attention Gradient Attack (Auto-SAGA). Our novel attack generates adversarial examples capable of fooling both SNN and non-SNN models simultaneously. Auto-SAGA is as much as $91.1\%$ more effective on SNN/ViT model ensembles and provides a $3\times$ boost in attack effectiveness on adversarially trained SNN ensembles compared to conventional white-box attacks like Auto-PGD. Our experiments and analyses are broad and rigorous covering three datasets (CIFAR-10, CIFAR-100 and ImageNet), five different white-box attacks and nineteen classifier models (seven for each CIFAR dataset and five models for ImageNet).
Game Theoretic Mixed Experts for Combinational Adversarial Machine Learning
Rathbun, Ethan, Mahmood, Kaleel, Ahmad, Sohaib, Ding, Caiwen, van Dijk, Marten
Recent advances in adversarial machine learning have shown that defenses considered to be robust are actually susceptible to adversarial attacks which are specifically customized to target their weaknesses. These defenses include Barrage of Random Transforms (BaRT), Friendly Adversarial Training (FAT), Trash is Treasure (TiT) and ensemble models made up of Vision Transformers (ViTs), Big Transfer models and Spiking Neural Networks (SNNs). We first conduct a transferability analysis, to demonstrate the adversarial examples generated by customized attacks on one defense, are not often misclassified by another defense. This finding leads to two important questions. First, how can the low transferability between defenses be utilized in a game theoretic framework to improve the robustness? Second, how can an adversary within this framework develop effective multi-model attacks? In this paper, we provide a game-theoretic framework for ensemble adversarial attacks and defenses. Our framework is called Game theoretic Mixed Experts (GaME). It is designed to find the Mixed-Nash strategy for both a detector based and standard defender, when facing an attacker employing compositional adversarial attacks. We further propose three new attack algorithms, specifically designed to target defenses with randomized transformations, multi-model voting schemes, and adversarial detector architectures. These attacks serve to both strengthen defenses generated by the GaME framework and verify their robustness against unforeseen attacks. Overall, our framework and analyses advance the field of adversarial machine learning by yielding new insights into compositional attack and defense formulations.