Plotting

 Rastogi, Richa


MultiScale Contextual Bandits for Long Term Objectives

arXiv.org Artificial Intelligence

The feedback that AI systems (e.g., recommender systems, chatbots) collect from user interactions is a crucial source of training data. While short-term feedback (e.g., clicks, engagement) is widely used for training, there is ample evidence that optimizing short-term feedback does not necessarily achieve the desired long-term objectives. Unfortunately, directly optimizing for long-term objectives is challenging, and we identify the disconnect in the timescales of short-term interventions (e.g., rankings) and the long-term feedback (e.g., user retention) as one of the key obstacles. To overcome this disconnect, we introduce the framework of MultiScale Policy Learning to contextually reconcile that AI systems need to act and optimize feedback at multiple interdependent timescales. For any two levels, our formulation selects the shorter-term objective at the next lower scale to optimize the longer-term objective at the next higher scale. As a result, the policies at all levels effectively optimize for the long-term. We instantiate the framework with MultiScale Off-Policy Bandit Learning (MSBL) and demonstrate its effectiveness on three tasks relating to recommender systems and text generation.


Fair Ranking under Disparate Uncertainty

arXiv.org Artificial Intelligence

Ranking is a ubiquitous method for focusing the attention of human evaluators on a manageable subset of options. Its use ranges from surfacing potentially relevant products on an e-commerce site to prioritizing college applications for human review. While ranking can make human evaluation far more effective by focusing attention on the most promising options, we argue that it can introduce unfairness if the uncertainty of the underlying relevance model differs between groups of options. Unfortunately, such disparity in uncertainty appears widespread, since the relevance estimates for minority groups tend to have higher uncertainty due to a lack of data or appropriate features. To overcome this fairness issue, we propose Equal-Opportunity Ranking (EOR) as a new fairness criterion for ranking that provably corrects for the disparity in uncertainty between groups. Furthermore, we present a practical algorithm for computing EOR rankings in time $O(n \log(n))$ and prove its close approximation guarantee to the globally optimal solution. In a comprehensive empirical evaluation on synthetic data, a US Census dataset, and a real-world case study of Amazon search queries, we find that the algorithm reliably guarantees EOR fairness while providing effective rankings.


Semi-Parametric Inducing Point Networks and Neural Processes

arXiv.org Artificial Intelligence

We introduce semi-parametric inducing point networks (SPIN), a general-purpose architecture that can query the training set at inference time in a compute-efficient manner. Semi-parametric architectures are typically more compact than parametric models, but their computational complexity is often quadratic. In contrast, SPIN attains linear complexity via a cross-attention mechanism between datapoints inspired by inducing point methods. Querying large training sets can be particularly useful in meta-learning, as it unlocks additional training signal, but often exceeds the scaling limits of existing models. We use SPIN as the basis of the Inducing Point Neural Process, a probabilistic model which supports large contexts in meta-learning and achieves high accuracy where existing models fail. In our experiments, SPIN reduces memory requirements, improves accuracy across a range of meta-learning tasks, and improves state-of-the-art performance on an important practical problem, genotype imputation.