Rashtchian, Cyrus
Adversarial Examples for Non-Parametric Methods: Attacks, Defenses and Large Sample Limits
Yang, Yao-Yuan, Rashtchian, Cyrus, Wang, Yizhen, Chaudhuri, Kamalika
Adversarial examples have received a great deal of recent attention because of their potential to uncover security flaws in machine learning systems. However, most prior work on adversarial examples has been on parametric classifiers, for which generic attack and defense methods are known; non-parametric methods have been only considered on an ad-hoc or classifier-specific basis. In this work, we take a holistic look at adversarial examples for non-parametric methods. We first provide a general region-based attack that applies to a wide range of classifiers, including nearest neighbors, decision trees, and random forests. Motivated by the close connection between non-parametric methods and the Bayes Optimal classifier, we next exhibit a robust analogue to the Bayes Optimal, and we use it to motivate a novel and generic defense that we call adversarial pruning. We empirically show that the region-based attack and adversarial pruning defense are either better than or competitive with existing attacks and defenses for non-parametric methods, while being considerably more generally applicable.
Clustering Billions of Reads for DNA Data Storage
Rashtchian, Cyrus, Makarychev, Konstantin, Racz, Miklos, Ang, Siena, Jevdjic, Djordje, Yekhanin, Sergey, Ceze, Luis, Strauss, Karin
Storing data in synthetic DNA offers the possibility of improving information density and durability by several orders of magnitude compared to current storage technologies. However, DNA data storage requires a computationally intensive process to retrieve the data. In particular, a crucial step in the data retrieval pipeline involves clustering billions of strings with respect to edit distance. Datasets in this domain have many notable properties, such as containing a very large number of small clusters that are well-separated in the edit distance metric space. In this regime, existing algorithms are unsuitable because of either their long running time or low accuracy. To address this issue, we present a novel distributed algorithm for approximately computing the underlying clusters. Our algorithm converges efficiently on any dataset that satisfies certain separability properties, such as those coming from DNA data storage systems. We also prove that, under these assumptions, our algorithm is robust to outliers and high levels of noise. We provide empirical justification of the accuracy, scalability, and convergence of our algorithm on real and synthetic data. Compared to the state-of-the-art algorithm for clustering DNA sequences, our algorithm simultaneously achieves higher accuracy and a 1000x speedup on three real datasets.