Rasheed, Adil
Deep active learning for nonlinear system identification
Lundby, Erlend Torje Berg, Rasheed, Adil, Halvorsen, Ivar Johan, Reinhardt, Dirk, Gros, Sebastien, Gravdahl, Jan Tommy
The exploding research interest for neural networks in modeling nonlinear dynamical systems is largely explained by the networks' capacity to model complex input-output relations directly from data. However, they typically need vast training data before they can be put to any good use. The data generation process for dynamical systems can be an expensive endeavor both in terms of time and resources. Active learning addresses this shortcoming by acquiring the most informative data, thereby reducing the need to collect enormous datasets. What makes the current work unique is integrating the deep active learning framework into nonlinear system identification. We formulate a general static deep active learning acquisition problem for nonlinear system identification. This is enabled by exploring system dynamics locally in different regions of the input space to obtain a simulated dataset covering the broader input space. This simulated dataset can be used in a static deep active learning acquisition scheme referred to as global explorations. The global exploration acquires a batch of initial states corresponding to the most informative state-action trajectories according to a batch acquisition function. The local exploration solves an optimal control problem, finding the control trajectory that maximizes some measure of information. After a batch of informative initial states is acquired, a new round of local explorations from the initial states in the batch is conducted to obtain a set of corresponding control trajectories that are to be applied on the system dynamics to get data from the system. Information measures used in the acquisition scheme are derived from the predictive variance of an ensemble of neural networks. The novel method outperforms standard data acquisition methods used for system identification of nonlinear dynamical systems in the case study performed on simulated data.
A novel corrective-source term approach to modeling unknown physics in aluminum extraction process
Robinson, Haakon, Lundby, Erlend, Rasheed, Adil, Gravdahl, Jan Tommy
With the ever-increasing availability of data, there has been an explosion of interest in applying modern machine learning methods to fields such as modeling and control. However, despite the flexibility and surprising accuracy of such black-box models, it remains difficult to trust them. Recent efforts to combine the two approaches aim to develop flexible models that nonetheless generalize well; a paradigm we call Hybrid Analysis and modeling (HAM). In this work we investigate the Corrective Source Term Approach (CoSTA), which uses a data-driven model to correct a misspecified physics-based model. This enables us to develop models that make accurate predictions even when the underlying physics of the problem is not well understood. We apply CoSTA to model the Hall-H\'eroult process in an aluminum electrolysis cell. We demonstrate that the method improves both accuracy and predictive stability, yielding an overall more trustworthy model.
Sparse deep neural networks for modeling aluminum electrolysis dynamics
Lundby, Erlend Torje Berg, Rasheed, Adil, Halvorsen, Ivar Johan, Gravdahl, Jan Tommy
Deep neural networks have become very popular in modeling complex nonlinear processes due to their extraordinary ability to fit arbitrary nonlinear functions from data with minimal expert intervention. However, they are almost always overparameterized and challenging to interpret due to their internal complexity. Furthermore, the optimization process to find the learned model parameters can be unstable due to the process getting stuck in local minima. In this work, we demonstrate the value of sparse regularization techniques to significantly reduce the model complexity. We demonstrate this for the case of an aluminium extraction process, which is highly nonlinear system with many interrelated subprocesses. We trained a densely connected deep neural network to model the process and then compared the effects of sparsity promoting l1 regularization on generalizability, interpretability, and training stability. We found that the regularization significantly reduces model complexity compared to a corresponding dense neural network. We argue that this makes the model more interpretable, and show that training an ensemble of sparse neural networks with different parameter initializations often converges to similar model structures with similar learned input features. Furthermore, the empirical study shows that the resulting sparse models generalize better from small training sets than their dense counterparts.
Ship Performance Monitoring using Machine-learning
Gupta, Prateek, Rasheed, Adil, Steen, Sverre
The hydrodynamic performance of a sea-going ship varies over its lifespan due to factors like marine fouling and the condition of the anti-fouling paint system. In order to accurately estimate the power demand and fuel consumption for a planned voyage, it is important to assess the hydrodynamic performance of the ship. The current work uses machine-learning (ML) methods to estimate the hydrodynamic performance of a ship using the onboard recorded in-service data. Three ML methods, NL-PCR, NL-PLSR and probabilistic ANN, are calibrated using the data from two sister ships. The calibrated models are used to extract the varying trend in ship's hydrodynamic performance over time and predict the change in performance through several propeller and hull cleaning events. The predicted change in performance is compared with the corresponding values estimated using the fouling friction coefficient ($\Delta C_F$). The ML methods are found to be performing well while modelling the hydrodynamic state variables of the ships with probabilistic ANN model performing the best, but the results from NL-PCR and NL-PLSR are not far behind, indicating that it may be possible to use simple methods to solve such problems with the help of domain knowledge.
Geometric Change Detection in Digital Twins using 3D Machine Learning
Sundby, Tiril, Graham, Julia Maria, Rasheed, Adil, Tabib, Mandar, San, Omer
Digital twins are meant to bridge the gap between real-world physical systems and virtual representations. Both stand-alone and descriptive digital twins incorporate 3D geometric models, which are the physical representations of objects in the digital replica. Digital twin applications are required to rapidly update internal parameters with the evolution of their physical counterpart. Due to an essential need for having high-quality geometric models for accurate physical representations, the storage and bandwidth requirements for storing 3D model information can quickly exceed the available storage and bandwidth capacity. In this work, we demonstrate a novel approach to geometric change detection in the context of a digital twin. We address the issue through a combined solution of Dynamic Mode Decomposition (DMD) for motion detection, YOLOv5 for object detection, and 3D machine learning for pose estimation. DMD is applied for background subtraction, enabling detection of moving foreground objects in real-time. The video frames containing detected motion are extracted and used as input to the change detection network. The object detection algorithm YOLOv5 is applied to extract the bounding boxes of detected objects in the video frames. Furthermore, the rotational pose of each object is estimated in a 3D pose estimation network. A series of convolutional neural networks conducts feature extraction from images and 3D model shapes. Then, the network outputs the estimated Euler angles of the camera orientation with respect to the object in the input image. By only storing data associated with a detected change in pose, we minimize necessary storage and bandwidth requirements while still being able to recreate the 3D scene on demand.
COLREG-Compliant Collision Avoidance for Unmanned Surface Vehicle using Deep Reinforcement Learning
Meyer, Eivind, Heiberg, Amalie, Rasheed, Adil, San, Omer
Path Following and Collision Avoidance, be it for unmanned surface vessels or other autonomous vehicles, are two fundamental guidance problems in robotics. For many decades, they have been subject to academic study, leading to a vast number of proposed approaches. However, they have mostly been treated as separate problems, and have typically relied on non-linear first-principles models with parameters that can only be determined experimentally. The rise of Deep Reinforcement Learning (DRL) in recent years suggests an alternative approach: end-to-end learning of the optimal guidance policy from scratch by means of a trial-and-error based approach. In this article, we explore the potential of Proximal Policy Optimization (PPO), a DRL algorithm with demonstrated state-of-the-art performance on Continuous Control tasks, when applied to the dual-objective problem of controlling an underactuated Autonomous Surface Vehicle in a COLREGs compliant manner such that it follows an a priori known desired path while avoiding collisions with other vessels along the way. Based on high-fidelity elevation and AIS tracking data from the Trondheim Fjord, an inlet of the Norwegian sea, we evaluate the trained agent's performance in challenging, dynamic real-world scenarios where the ultimate success of the agent rests upon its ability to navigate non-uniform marine terrain while handling challenging, but realistic vessel encounters.
Taming an autonomous surface vehicle for path following and collision avoidance using deep reinforcement learning
Meyer, Eivind, Robinson, Haakon, Rasheed, Adil, San, Omer
Eivind Meyer is currently working on his Master's thesis, completing his five-year integrated Master's degree in Cybernetics and Robotics at the Norwegian University of Science and Technology (NTNU) in Trondheim. Having specialized in Real Time Systems, his research interests focus on adopting state-of-the-art Artificial Intelligence methods for Autonomous Vehicle Control. Haakon Robinson is a PhD candidate at the Norwegian University of Science and Technology (NTNU). He received a Bachelors degree in Physics in 2015 and completed a Masters degree in Cybernetics and Robotics in 2019, both at NTNU. His current work investigates the overlap between modern machine learning techniques and established methods within modelling and control, with a focus on improving the interpretability and be-E Meyer et al.: Preprint submitted to Elsevier Page 15 of 16 Taming an ASV for path following and collision avoidance using DRL havioural guarantees of hybrid models that combine first principle models and data-driven components.
Dissecting Deep Neural Networks
Robinson, Haakon, Rasheed, Adil, San, Omer
In exchange for large quantities of data and processing power, deep neural networks have yielded models that provide state of the art predication capabilities in many fields. However, a lack of strong guarantees on their behaviour have raised concerns over their use in safety-critical applications. A first step to understanding these networks is to develop alternate representations that allow for further analysis. It has been shown that neural networks with piecewise affine activation functions are themselves piecewise affine, with their domains consisting of a vast number of linear regions. So far, the research on this topic has focused on counting the number of linear regions, rather than obtaining explicit piecewise affine representations. This work presents a novel algorithm that can compute the piecewise affine form of any fully connected neural network with rectified linear unit activations.