Not enough data to create a plot.
Try a different view from the menu above.
Ran El-Yaniv
Binarized Neural Networks
Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio
We introduce a method to train Binarized Neural Networks (BNNs) - neural networks with binary weights and activations at run-time. At train-time the binary weights and activations are used for computing the parameter gradients. During the forward pass, BNNs drastically reduce memory size and accesses, and replace most arithmetic operations with bit-wise operations, which is expected to substantially improve power-efficiency. To validate the effectiveness of BNNs, we conducted two sets of experiments on the Torch7 and Theano frameworks. On both, BNNs achieved nearly state-of-the-art results over the MNIST, CIFAR-10 and SVHN datasets. We also report our preliminary results on the challenging ImageNet dataset. Last but not least, we wrote a binary matrix multiplication GPU kernel with which it is possible to run our MNIST BNN 7 times faster than with an unoptimized GPU kernel, without suffering any loss in classification accuracy. The code for training and running our BNNs is available on-line.
Deep Active Learning with a Neural Architecture Search
Yonatan Geifman, Ran El-Yaniv
We consider active learning of deep neural networks. Most active learning works in this context have focused on studying effective querying mechanisms and assumed that an appropriate network architecture is a priori known for the problem at hand. We challenge this assumption and propose a novel active strategy whereby the learning algorithm searches for effective architectures on the fly, while actively learning. We apply our strategy using three known querying techniques (softmax response, MC-dropout, and coresets) and show that the proposed approach overwhelmingly outperforms active learning using fixed architectures.
Deep Active Learning with a Neural Architecture Search
Yonatan Geifman, Ran El-Yaniv
We consider active learning of deep neural networks. Most active learning works in this context have focused on studying effective querying mechanisms and assumed that an appropriate network architecture is a priori known for the problem at hand. We challenge this assumption and propose a novel active strategy whereby the learning algorithm searches for effective architectures on the fly, while actively learning. We apply our strategy using three known querying techniques (softmax response, MC-dropout, and coresets) and show that the proposed approach overwhelmingly outperforms active learning using fixed architectures.