Goto

Collaborating Authors

 Ramdas, Aaditya


On the Sublinear Regret of GP-UCB

arXiv.org Artificial Intelligence

In the kernelized bandit problem, a learner aims to sequentially compute the optimum of a function lying in a reproducing kernel Hilbert space given only noisy evaluations at sequentially chosen points. In particular, the learner aims to minimize regret, which is a measure of the suboptimality of the choices made. Arguably the most popular algorithm is the Gaussian Process Upper Confidence Bound (GP-UCB) algorithm, which involves acting based on a simple linear estimator of the unknown function. Despite its popularity, existing analyses of GP-UCB give a suboptimal regret rate, which fails to be sublinear for many commonly used kernels such as the Mat\'ern kernel. This has led to a longstanding open question: are existing regret analyses for GP-UCB tight, or can bounds be improved by using more sophisticated analytical techniques? In this work, we resolve this open question and show that GP-UCB enjoys nearly optimal regret. In particular, our results yield sublinear regret rates for the Mat\'ern kernel, improving over the state-of-the-art analyses and partially resolving a COLT open problem posed by Vakili et al. Our improvements rely on a key technical contribution -- regularizing kernel ridge estimators in proportion to the smoothness of the underlying kernel $k$. Applying this key idea together with a largely overlooked concentration result in separable Hilbert spaces (for which we provide an independent, simplified derivation), we are able to provide a tighter analysis of the GP-UCB algorithm.


Sequential Predictive Two-Sample and Independence Testing

arXiv.org Artificial Intelligence

We study the problems of sequential nonparametric two-sample and independence testing. Sequential tests process data online and allow using observed data to decide whether to stop and reject the null hypothesis or to collect more data, while maintaining type I error control. We build upon the principle of (nonparametric) testing by betting, where a gambler places bets on future observations and their wealth measures evidence against the null hypothesis. While recently developed kernel-based betting strategies often work well on simple distributions, selecting a suitable kernel for high-dimensional or structured data, such as images, is often nontrivial. To address this drawback, we design prediction-based betting strategies that rely on the following fact: if a sequentially updated predictor starts to consistently determine (a) which distribution an instance is drawn from, or (b) whether an instance is drawn from the joint distribution or the product of the marginal distributions (the latter produced by external randomization), it provides evidence against the two-sample or independence nulls respectively. We empirically demonstrate the superiority of our tests over kernel-based approaches under structured settings. Our tests can be applied beyond the case of independent and identically distributed data, remaining valid and powerful even when the data distribution drifts over time.


Sequential Kernelized Independence Testing

arXiv.org Artificial Intelligence

Independence testing is a classical statistical problem that has been extensively studied in the batch setting when one fixes the sample size before collecting data. However, practitioners often prefer procedures that adapt to the complexity of a problem at hand instead of setting sample size in advance. Ideally, such procedures should (a) stop earlier on easy tasks (and later on harder tasks), hence making better use of available resources, and (b) continuously monitor the data and efficiently incorporate statistical evidence after collecting new data, while controlling the false alarm rate. Classical batch tests are not tailored for streaming data: valid inference after data peeking requires correcting for multiple testing which results in low power. Following the principle of testing by betting, we design sequential kernelized independence tests that overcome such shortcomings. We exemplify our broad framework using bets inspired by kernelized dependence measures, e.g., the Hilbert-Schmidt independence criterion. Our test is also valid under non-i.i.d., time-varying settings. We demonstrate the power of our approaches on both simulated and real data.


Risk-limiting Financial Audits via Weighted Sampling without Replacement

arXiv.org Artificial Intelligence

We introduce the notion of a risk-limiting financial auditing (RLFA): given $N$ transactions, the goal is to estimate the total misstated monetary fraction~($m^*$) to a given accuracy $\epsilon$, with confidence $1-\delta$. We do this by constructing new confidence sequences (CSs) for the weighted average of $N$ unknown values, based on samples drawn without replacement according to a (randomized) weighted sampling scheme. Using the idea of importance weighting to construct test martingales, we first develop a framework to construct CSs for arbitrary sampling strategies. Next, we develop methods to improve the quality of CSs by incorporating side information about the unknown values associated with each item. We show that when the side information is sufficiently predictive, it can directly drive the sampling. Addressing the case where the accuracy is unknown a priori, we introduce a method that incorporates side information via control variates. Crucially, our construction is adaptive: if the side information is highly predictive of the unknown misstated amounts, then the benefits of incorporating it are significant; but if the side information is uncorrelated, our methods learn to ignore it. Our methods recover state-of-the-art bounds for the special case when the weights are equal, which has already found applications in election auditing. The harder weighted case solves our more challenging problem of AI-assisted financial auditing.


The extended Ville's inequality for nonintegrable nonnegative supermartingales

arXiv.org Machine Learning

Following initial work by Robbins, we rigorously present an extended theory of nonnegative supermartingales, requiring neither integrability nor finiteness. In particular, we derive a key maximal inequality foreshadowed by Robbins, which we call the extended Ville's inequality, that strengthens the classical Ville's inequality (for integrable nonnegative supermartingales), and also applies to our nonintegrable setting. We derive an extension of the method of mixtures, which applies to $\sigma$-finite mixtures of our extended nonnegative supermartingales. We present some implications of our theory for sequential statistics, such as the use of improper mixtures (priors) in deriving nonparametric confidence sequences and (extended) e-processes.


Huber-Robust Confidence Sequences

arXiv.org Artificial Intelligence

Confidence sequences are confidence intervals that can be sequentially tracked, and are valid at arbitrary data-dependent stopping times. This paper presents confidence sequences for a univariate mean of an unknown distribution with a known upper bound on the $p$-th central moment ($p$ > 1), but allowing for (at most) $\epsilon$ fraction of arbitrary distribution corruption, as in Huber's contamination model. We do this by designing new robust exponential supermartingales, and show that the resulting confidence sequences attain the optimal width achieved in the nonsequential setting. Perhaps surprisingly, the constant margin between our sequential result and the lower bound is smaller than even fixed-time robust confidence intervals based on the trimmed mean, for example. Since confidence sequences are a common tool used within A/B/n testing and bandits, these results open the door to sequential experimentation that is robust to outliers and adversarial corruptions.


Sequential change detection via backward confidence sequences

arXiv.org Artificial Intelligence

We present a simple reduction from sequential estimation to sequential changepoint detection (SCD). In short, suppose we are interested in detecting changepoints in some parameter or functional $\theta$ of the underlying distribution. We demonstrate that if we can construct a confidence sequence (CS) for $\theta$, then we can also successfully perform SCD for $\theta$. This is accomplished by checking if two CSs -- one forwards and the other backwards -- ever fail to intersect. Since the literature on CSs has been rapidly evolving recently, the reduction provided in this paper immediately solves several old and new change detection problems. Further, our "backward CS", constructed by reversing time, is new and potentially of independent interest. We provide strong nonasymptotic guarantees on the frequency of false alarms and detection delay, and demonstrate numerical effectiveness on several problems.


A Permutation-free Kernel Two-Sample Test

arXiv.org Artificial Intelligence

The kernel Maximum Mean Discrepancy~(MMD) is a popular multivariate distance metric between distributions that has found utility in two-sample testing. The usual kernel-MMD test statistic is a degenerate U-statistic under the null, and thus it has an intractable limiting distribution. Hence, to design a level-$\alpha$ test, one usually selects the rejection threshold as the $(1-\alpha)$-quantile of the permutation distribution. The resulting nonparametric test has finite-sample validity but suffers from large computational cost, since every permutation takes quadratic time. We propose the cross-MMD, a new quadratic-time MMD test statistic based on sample-splitting and studentization. We prove that under mild assumptions, the cross-MMD has a limiting standard Gaussian distribution under the null. Importantly, we also show that the resulting test is consistent against any fixed alternative, and when using the Gaussian kernel, it has minimax rate-optimal power against local alternatives. For large sample sizes, our new cross-MMD provides a significant speedup over the MMD, for only a slight loss in power.


A Permutation-Free Kernel Independence Test

arXiv.org Artificial Intelligence

In nonparametric independence testing, we observe i.i.d.\ data $\{(X_i,Y_i)\}_{i=1}^n$, where $X \in \mathcal{X}, Y \in \mathcal{Y}$ lie in any general spaces, and we wish to test the null that $X$ is independent of $Y$. Modern test statistics such as the kernel Hilbert-Schmidt Independence Criterion (HSIC) and Distance Covariance (dCov) have intractable null distributions due to the degeneracy of the underlying U-statistics. Thus, in practice, one often resorts to using permutation testing, which provides a nonasymptotic guarantee at the expense of recalculating the quadratic-time statistics (say) a few hundred times. This paper provides a simple but nontrivial modification of HSIC and dCov (called xHSIC and xdCov, pronounced ``cross'' HSIC/dCov) so that they have a limiting Gaussian distribution under the null, and thus do not require permutations. This requires building on the newly developed theory of cross U-statistics by Kim and Ramdas (2020), and in particular developing several nontrivial extensions of the theory in Shekhar et al. (2022), which developed an analogous permutation-free kernel two-sample test. We show that our new tests, like the originals, are consistent against fixed alternatives, and minimax rate optimal against smooth local alternatives. Numerical simulations demonstrate that compared to the full dCov or HSIC, our variants have the same power up to a $\sqrt 2$ factor, giving practitioners a new option for large problems or data-analysis pipelines where computation, not sample size, could be the bottleneck.


Anytime-valid off-policy inference for contextual bandits

arXiv.org Artificial Intelligence

Contextual bandit algorithms are ubiquitous tools for active sequential experimentation in healthcare and the tech industry. They involve online learning algorithms that adaptively learn policies over time to map observed contexts $X_t$ to actions $A_t$ in an attempt to maximize stochastic rewards $R_t$. This adaptivity raises interesting but hard statistical inference questions, especially counterfactual ones: for example, it is often of interest to estimate the properties of a hypothetical policy that is different from the logging policy that was used to collect the data -- a problem known as ``off-policy evaluation'' (OPE). Using modern martingale techniques, we present a comprehensive framework for OPE inference that relax many unnecessary assumptions made in past work, significantly improving on them both theoretically and empirically. Importantly, our methods can be employed while the original experiment is still running (that is, not necessarily post-hoc), when the logging policy may be itself changing (due to learning), and even if the context distributions are a highly dependent time-series (such as if they are drifting over time). More concretely, we derive confidence sequences for various functionals of interest in OPE. These include doubly robust ones for time-varying off-policy mean reward values, but also confidence bands for the entire CDF of the off-policy reward distribution. All of our methods (a) are valid at arbitrary stopping times (b) only make nonparametric assumptions, (c) do not require known bounds on the maximal importance weights, and (d) adapt to the empirical variance of our estimators. In summary, our methods enable anytime-valid off-policy inference using adaptively collected contextual bandit data.