Raj, Bhiksha
Psychoacoustic Challenges Of Speech Enhancement On VoIP Platforms
Konan, Joseph, Bhargave, Ojas, Agnihotri, Shikhar, Han, Shuo, Zeng, Yunyang, Shah, Ankit, Raj, Bhiksha
Within the ambit of VoIP (Voice over Internet Protocol) telecommunications, the complexities introduced by acoustic transformations merit rigorous analysis. This research, rooted in the exploration of proprietary sender-side denoising effects, meticulously evaluates platforms such as Google Meets and Zoom. The study draws upon the Deep Noise Suppression (DNS) 2020 dataset, ensuring a structured examination tailored to various denoising settings and receiver interfaces. A methodological novelty is introduced via the Oaxaca decomposition, traditionally an econometric tool, repurposed herein to analyze acoustic-phonetic perturbations within VoIP systems. To further ground the implications of these transformations, psychoacoustic metrics, specifically PESQ and STOI, were harnessed to furnish a comprehensive understanding of speech alterations. Cumulatively, the insights garnered underscore the intricate landscape of VoIP-influenced acoustic dynamics. In addition to the primary findings, a multitude of metrics are reported, extending the research purview. Moreover, out-of-domain benchmarking for both time and time-frequency domain speech enhancement models is included, thereby enhancing the depth and applicability of this inquiry. Repository: github.com/deepology/VoIP-DNS-Challenge
Token Prediction as Implicit Classification to Identify LLM-Generated Text
Chen, Yutian, Kang, Hao, Zhai, Vivian, Li, Liangze, Singh, Rita, Raj, Bhiksha
This paper introduces a novel approach for identifying the possible large language models (LLMs) involved in text generation. Instead of adding an additional classification layer to a base LM, we reframe the classification task as a next-token prediction task and directly fine-tune the base LM to perform it. We utilize the Text-to-Text Transfer Transformer (T5) model as the backbone for our experiments. We compared our approach to the more direct approach of utilizing hidden states for classification. Evaluation shows the exceptional performance of our method in the text classification task, highlighting its simplicity and efficiency. Furthermore, interpretability studies on the features extracted by our model reveal its ability to differentiate distinctive writing styles among various LLMs even in the absence of an explicit classifier. We also collected a dataset named OpenLLMText, containing approximately 340k text samples from human and LLMs, including GPT3.5, PaLM, LLaMA, and GPT2.
LoFT: Local Proxy Fine-tuning For Improving Transferability Of Adversarial Attacks Against Large Language Model
Shah, Muhammad Ahmed, Sharma, Roshan, Dhamyal, Hira, Olivier, Raphael, Shah, Ankit, Konan, Joseph, Alharthi, Dareen, Bukhari, Hazim T, Baali, Massa, Deshmukh, Soham, Kuhlmann, Michael, Raj, Bhiksha, Singh, Rita
It has been shown that Large Language Model (LLM) alignments can be circumvented by appending specially crafted attack suffixes with harmful queries to elicit harmful responses. To conduct attacks against private target models whose characterization is unknown, public models can be used as proxies to fashion the attack, with successful attacks being transferred from public proxies to private target models. The success rate of attack depends on how closely the proxy model approximates the private model. We hypothesize that for attacks to be transferrable, it is sufficient if the proxy can approximate the target model in the neighborhood of the harmful query. Therefore, in this paper, we propose \emph{Local Fine-Tuning (LoFT)}, \textit{i.e.}, fine-tuning proxy models on similar queries that lie in the lexico-semantic neighborhood of harmful queries to decrease the divergence between the proxy and target models. First, we demonstrate three approaches to prompt private target models to obtain similar queries given harmful queries. Next, we obtain data for local fine-tuning by eliciting responses from target models for the generated similar queries. Then, we optimize attack suffixes to generate attack prompts and evaluate the impact of our local fine-tuning on the attack's success rate. Experiments show that local fine-tuning of proxy models improves attack transferability and increases attack success rate by $39\%$, $7\%$, and $0.5\%$ (absolute) on target models ChatGPT, GPT-4, and Claude respectively.
Pairwise Similarity Learning is SimPLE
Wen, Yandong, Liu, Weiyang, Feng, Yao, Raj, Bhiksha, Singh, Rita, Weller, Adrian, Black, Michael J., Schรถlkopf, Bernhard
In this paper, we focus on a general yet important learning problem, pairwise similarity learning (PSL). PSL subsumes a wide range of important applications, such as open-set face recognition, speaker verification, image retrieval and person re-identification. The goal of PSL is to learn a pairwise similarity function assigning a higher similarity score to positive pairs (i.e., a pair of samples with the same label) than to negative pairs (i.e., a pair of samples with different label). We start by identifying a key desideratum for PSL, and then discuss how existing methods can achieve this desideratum. We then propose a surprisingly simple proxy-free method, called SimPLE, which requires neither feature/proxy normalization nor angular margin and yet is able to generalize well in open-set recognition. We apply the proposed method to three challenging PSL tasks: open-set face recognition, image retrieval and speaker verification. Comprehensive experimental results on large-scale benchmarks show that our method performs significantly better than current state-of-the-art methods.
Continual Contrastive Spoken Language Understanding
Cappellazzo, Umberto, Fini, Enrico, Yang, Muqiao, Falavigna, Daniele, Brutti, Alessio, Raj, Bhiksha
Recently, neural networks have shown impressive progress across diverse fields, with speech processing being no exception. However, recent breakthroughs in this area require extensive offline training using large datasets and tremendous computing resources. Unfortunately, these models struggle to retain their previously acquired knowledge when learning new tasks continually, and retraining from scratch is almost always impractical. In this paper, we investigate the problem of learning sequence-to-sequence models for spoken language understanding in a class-incremental learning (CIL) setting and we propose COCONUT, a CIL method that relies on the combination of experience replay and contrastive learning. Through a modified version of the standard supervised contrastive loss applied only to the rehearsal samples, COCONUT preserves the learned representations by pulling closer samples from the same class and pushing away the others. Moreover, we leverage a multimodal contrastive loss that helps the model learn more discriminative representations of the new data by aligning audio and text features. We also investigate different contrastive designs to combine the strengths of the contrastive loss with teacher-student architectures used for distillation. Experiments on two established SLU datasets reveal the effectiveness of our proposed approach and significant improvements over the baselines. We also show that COCONUT can be combined with methods that operate on the decoder side of the model, resulting in further metrics improvements.
uSee: Unified Speech Enhancement and Editing with Conditional Diffusion Models
Yang, Muqiao, Zhang, Chunlei, Xu, Yong, Xu, Zhongweiyang, Wang, Heming, Raj, Bhiksha, Yu, Dong
Speech enhancement aims to improve the quality of speech signals in terms of quality and intelligibility, and speech editing refers to the process of editing the speech according to specific user needs. In this paper, we propose a Unified Speech Enhancement and Editing (uSee) model with conditional diffusion models to handle various tasks at the same time in a generative manner. Specifically, by providing multiple types of conditions including self-supervised learning embeddings and proper text prompts to the score-based diffusion model, we can enable controllable generation of the unified speech enhancement and editing model to perform corresponding actions on the source speech. Our experiments show that our proposed uSee model can achieve superior performance in both speech denoising and dereverberation compared to other related generative speech enhancement models, and can perform speech editing given desired environmental sound text description, signal-to-noise ratios (SNR), and room impulse responses (RIR). Demos of the generated speech are available at https://muqiaoy.github.io/usee.
Evaluating Speech Synthesis by Training Recognizers on Synthetic Speech
Alharthi, Dareen, Sharma, Roshan, Dhamyal, Hira, Maiti, Soumi, Raj, Bhiksha, Singh, Rita
Modern speech synthesis systems have improved significantly, with synthetic speech being indistinguishable from real speech. However, efficient and holistic evaluation of synthetic speech still remains a significant challenge. Human evaluation using Mean Opinion Score (MOS) is ideal, but inefficient due to high costs. Therefore, researchers have developed auxiliary automatic metrics like Word Error Rate (WER) to measure intelligibility. Prior works focus on evaluating synthetic speech based on pre-trained speech recognition models, however, this can be limiting since this approach primarily measures speech intelligibility. In this paper, we propose an evaluation technique involving the training of an ASR model on synthetic speech and assessing its performance on real speech. Our main assumption is that by training the ASR model on the synthetic speech, the WER on real speech reflects the similarity between distributions, a broader assessment of synthetic speech quality beyond intelligibility. Our proposed metric demonstrates a strong correlation with both MOS naturalness and MOS intelligibility when compared to SpeechLMScore and MOSNet on three recent Text-to-Speech (TTS) systems: MQTTS, StyleTTS, and YourTTS.
Understanding and Mitigating the Label Noise in Pre-training on Downstream Tasks
Chen, Hao, Wang, Jindong, Shah, Ankit, Tao, Ran, Wei, Hongxin, Xie, Xing, Sugiyama, Masashi, Raj, Bhiksha
Pre-training on large-scale datasets and then fine-tuning on downstream tasks have become a standard practice in deep learning. However, pre-training data often contain label noise that may adversely affect the generalization of the model. This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks. More specifically, through extensive experiments of supervised pre-training models on synthetic noisy ImageNet-1K and YFCC15M datasets, we demonstrate that while slight noise in pre-training can benefit in-domain (ID) transfer performance, where the training and testing data share the same distribution, it always deteriorates out-of-domain (OOD) performance, where training and testing data distribution are different. We empirically verify that the reason behind is noise in pre-training shapes the feature space differently. We then propose a lightweight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization on both ID and OOD tasks, considering one may not be able to fully fine-tune or even access the pre-trained models. We conduct practical experiments on popular vision and language models that are pre-trained on noisy data for evaluation of our approach. Our analysis and results show the importance of this interesting and novel research direction, which we term Noisy Model Learning.
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
Chen, Hao, Shah, Ankit, Wang, Jindong, Tao, Ran, Wang, Yidong, Xie, Xing, Sugiyama, Masashi, Singh, Rita, Raj, Bhiksha
Learning with reduced labeling standards, such as noisy label, partial label, and multiple label candidates, which we generically refer to as \textit{imprecise} labels, is a commonplace challenge in machine learning tasks. Previous methods tend to propose specific designs for every emerging imprecise label configuration, which is usually unsustainable when multiple configurations of imprecision coexist. In this paper, we introduce imprecise label learning (ILL), a framework for the unification of learning with various imprecise label configurations. ILL leverages expectation-maximization (EM) for modeling the imprecise label information, treating the precise labels as latent variables.Instead of approximating the correct labels for training, it considers the entire distribution of all possible labeling entailed by the imprecise information. We demonstrate that ILL can seamlessly adapt to partial label learning, semi-supervised learning, noisy label learning, and, more importantly, a mixture of these settings. Notably, ILL surpasses the existing specified techniques for handling imprecise labels, marking the first unified framework with robust and effective performance across various challenging settings. We hope our work will inspire further research on this topic, unleashing the full potential of ILL in wider scenarios where precise labels are expensive and complicated to obtain.
Importance of negative sampling in weak label learning
Shah, Ankit, Tang, Fuyu, Ye, Zelin, Singh, Rita, Raj, Bhiksha
Weak-label learning is a challenging task that requires learning from data "bags" containing positive and negative instances, but only the bag labels are known. The pool of negative instances is usually larger than positive instances, thus making selecting the most informative negative instance critical for performance. Such a selection strategy for negative instances from each bag is an open problem that has not been well studied for weak-label learning. In this paper, we study several sampling strategies that can measure the usefulness of negative instances for weak-label learning and select them accordingly. We test our method on CIFAR-10 and AudioSet datasets and show that it improves the weak-label classification performance and reduces the computational cost compared to random sampling methods. Our work reveals that negative instances are not all equally irrelevant, and selecting them wisely can benefit weak-label learning.