Raina, Vyas
Rewarding Chatbots for Real-World Engagement with Millions of Users
Irvine, Robert, Boubert, Douglas, Raina, Vyas, Liusie, Adian, Zhu, Ziyi, Mudupalli, Vineet, Korshuk, Aliaksei, Liu, Zongyi, Cremer, Fritz, Assassi, Valentin, Beauchamp, Christie-Carol, Lu, Xiaoding, Rialan, Thomas, Beauchamp, William
The emergence of pretrained large language models has led to the deployment of a range of social chatbots for chitchat. Although these chatbots demonstrate language ability and fluency, they are not guaranteed to be engaging and can struggle to retain users. This work investigates the development of social chatbots that prioritize user engagement to enhance retention, specifically examining the use of human feedback to efficiently develop highly engaging chatbots. The proposed approach uses automatic pseudo-labels collected from user interactions to train a reward model that can be used to reject low-scoring sample responses generated by the chatbot model at inference time. Intuitive evaluation metrics, such as mean conversation length (MCL), are introduced as proxies to measure the level of engagement of deployed chatbots. A/B testing on groups of 10,000 new daily chatbot users on the Chai Research platform shows that this approach increases the MCL by up to 70%, which translates to a more than 30% increase in user retention for a GPT-J 6B model. Future work aims to use the reward model to realise a data fly-wheel, where the latest user conversations can be used to alternately fine-tune the language model and the reward model.
L2 proficiency assessment using self-supervised speech representations
Bannรฒ, Stefano, Knill, Kate M., Matassoni, Marco, Raina, Vyas, Gales, Mark J. F.
There has been a growing demand for automated spoken language assessment systems in recent years. A standard pipeline for this process is to start with a speech recognition system and derive features, either hand-crafted or based on deep-learning, that exploit the transcription and audio. Though these approaches can yield high performance systems, they require speech recognition systems that can be used for L2 speakers, and preferably tuned to the specific form of test being deployed. Recently a self-supervised speech representation based scheme, requiring no speech recognition, was proposed. This work extends the initial analysis conducted on this approach to a large scale proficiency test, Linguaskill, that comprises multiple parts, each designed to assess different attributes of a candidate's speaking proficiency. The performance of the self-supervised, wav2vec 2.0, system is compared to a high performance hand-crafted assessment system and a BERT-based text system both of which use speech transcriptions. Though the wav2vec 2.0 based system is found to be sensitive to the nature of the response, it can be configured to yield comparable performance to systems requiring a speech transcription, and yields gains when appropriately combined with standard approaches.
Gender Bias and Universal Substitution Adversarial Attacks on Grammatical Error Correction Systems for Automated Assessment
Raina, Vyas, Gales, Mark
Grammatical Error Correction (GEC) systems perform a sequence-to-sequence task, where an input word sequence containing grammatical errors, is corrected for these errors by the GEC system to output a grammatically correct word sequence. With the advent of deep learning methods, automated GEC systems have become increasingly popular. For example, GEC systems are often used on speech transcriptions of English learners as a form of assessment and feedback - these powerful GEC systems can be used to automatically measure an aspect of a candidate's fluency. The count of \textit{edits} from a candidate's input sentence (or essay) to a GEC system's grammatically corrected output sentence is indicative of a candidate's language ability, where fewer edits suggest better fluency. The count of edits can thus be viewed as a \textit{fluency score} with zero implying perfect fluency. However, although deep learning based GEC systems are extremely powerful and accurate, they are susceptible to adversarial attacks: an adversary can introduce a small, specific change at the input of a system that causes a large, undesired change at the output. When considering the application of GEC systems to automated language assessment, the aim of an adversary could be to cheat by making a small change to a grammatically incorrect input sentence that conceals the errors from a GEC system, such that no edits are found and the candidate is unjustly awarded a perfect fluency score. This work examines a simple universal substitution adversarial attack that non-native speakers of English could realistically employ to deceive GEC systems used for assessment.
Shifts: A Dataset of Real Distributional Shift Across Multiple Large-Scale Tasks
Malinin, Andrey, Band, Neil, Ganshin, null, Alexander, null, Chesnokov, German, Gal, Yarin, Gales, Mark J. F., Noskov, Alexey, Ploskonosov, Andrey, Prokhorenkova, Liudmila, Provilkov, Ivan, Raina, Vatsal, Raina, Vyas, Roginskiy, null, Denis, null, Shmatova, Mariya, Tigas, Panos, Yangel, Boris
There has been significant research done on developing methods for improving robustness to distributional shift and uncertainty estimation. In contrast, only limited work has examined developing standard datasets and benchmarks for assessing these approaches. Additionally, most work on uncertainty estimation and robustness has developed new techniques based on small-scale regression or image classification tasks. However, many tasks of practical interest have different modalities, such as tabular data, audio, text, or sensor data, which offer significant challenges involving regression and discrete or continuous structured prediction. Thus, given the current state of the field, a standardized large-scale dataset of tasks across a range of modalities affected by distributional shifts is necessary. This will enable researchers to meaningfully evaluate the plethora of recently developed uncertainty quantification methods, as well as assessment criteria and state-of-the-art baselines. In this work, we propose the \emph{Shifts Dataset} for evaluation of uncertainty estimates and robustness to distributional shift. The dataset, which has been collected from industrial sources and services, is composed of three tasks, with each corresponding to a particular data modality: tabular weather prediction, machine translation, and self-driving car (SDC) vehicle motion prediction. All of these data modalities and tasks are affected by real, `in-the-wild' distributional shifts and pose interesting challenges with respect to uncertainty estimation. In this work we provide a description of the dataset and baseline results for all tasks.