Radu Marinescu
From Stochastic Planning to Marginal MAP
Hao(Jackson) Cui, Radu Marinescu, Roni Khardon
It is well known that the problems of stochastic planning and probabilistic inference are closely related. This paper makes two contributions in this context. The first is to provide an analysis of the recently developed SOGBOFA heuristic planning algorithm that was shown to be effective for problems with large factored state and action spaces. It is shown that SOGBOFA can be seen as a specialized inference algorithm that computes its solutions through a combination of a symbolic variant of belief propagation and gradient ascent. The second contribution is a new solver for Marginal MAP (MMAP) inference. We introduce a new reduction from MMAP to maximum expected utility problems which are suitable for the symbolic computation in SOGBOFA. This yields a novel algebraic gradient-based solver (AGS) for MMAP. An experimental evaluation illustrates the potential of AGS in solving difficult MMAP problems.
Counting the Optimal Solutions in Graphical Models
Radu Marinescu, Rina Dechter
We introduce #opt, a new inference task for graphical models which calls for counting the number of optimal solutions of the model. We describe a novel variable elimination based approach for solving this task, as well as a depth-first branch and bound algorithm that traverses the AND/OR search space of the model. The key feature of the proposed algorithms is that their complexity is exponential in the induced width of the model only. It does not depend on the actual number of optimal solutions. Our empirical evaluation on various benchmarks demonstrates the effectiveness of the proposed algorithms compared with existing depth-first and best-first search based approaches that enumerate explicitly the optimal solutions.
From Stochastic Planning to Marginal MAP
Hao(Jackson) Cui, Radu Marinescu, Roni Khardon
It is well known that the problems of stochastic planning and probabilistic inference are closely related. This paper makes two contributions in this context. The first is to provide an analysis of the recently developed SOGBOFA heuristic planning algorithm that was shown to be effective for problems with large factored state and action spaces. It is shown that SOGBOFA can be seen as a specialized inference algorithm that computes its solutions through a combination of a symbolic variant of belief propagation and gradient ascent. The second contribution is a new solver for Marginal MAP (MMAP) inference. We introduce a new reduction from MMAP to maximum expected utility problems which are suitable for the symbolic computation in SOGBOFA. This yields a novel algebraic gradient-based solver (AGS) for MMAP. An experimental evaluation illustrates the potential of AGS in solving difficult MMAP problems.