Radford, Alec
Improving GANs Using Optimal Transport
Salimans, Tim, Zhang, Han, Radford, Alec, Metaxas, Dimitris
We present Optimal Transport GAN (OT-GAN), a variant of generative adversarial nets minimizing a new metric measuring the distance between the generator distribution and the data distribution. This metric, which we call mini-batch energy distance, combines optimal transport in primal form with an energy distance defined in an adversarially learned feature space, resulting in a highly discriminative distance function with unbiased mini-batch gradients. Experimentally we show OT-GAN to be highly stable when trained with large mini-batches, and we present state-of-the-art results on several popular benchmark problems for image generation.
Improved Techniques for Training GANs
Salimans, Tim, Goodfellow, Ian, Zaremba, Wojciech, Cheung, Vicki, Radford, Alec, Chen, Xi, Chen, Xi
We present a variety of new architectural features and training procedures that we apply to the generative adversarial networks (GANs) framework. Using our new techniques, we achieve state-of-the-art results in semi-supervised classification on MNIST, CIFAR-10 and SVHN. The generated images are of high quality as confirmed by a visual Turing test: Our model generates MNIST samples that humans cannot distinguish from real data, and CIFAR-10 samples that yield a human error rate of 21.3%. We also present ImageNet samples with unprecedented resolution and show that our methods enable the model to learn recognizable features of ImageNet classes.