Plotting

 Radev, Dragomir


LoFT: Enhancing Faithfulness and Diversity for Table-to-Text Generation via Logic Form Control

arXiv.org Artificial Intelligence

Logical Table-to-Text (LT2T) generation is tasked with generating logically faithful sentences from tables. There currently exists two challenges in the field: 1) Faithfulness: how to generate sentences that are factually correct given the table content; 2) Diversity: how to generate multiple sentences that offer different perspectives on the table. This work proposes LoFT, which utilizes logic forms as fact verifiers and content planners to control LT2T generation. Experimental results on the LogicNLG dataset demonstrate that LoFT is the first model that addresses unfaithfulness and lack of diversity issues simultaneously. Our code is publicly available at https://github.com/Yale-LILY/LoFT.


Discovering and Explaining the Representation Bottleneck of Graph Neural Networks from Multi-order Interactions

arXiv.org Artificial Intelligence

Graph neural networks (GNNs) mainly rely on the message-passing paradigm to propagate node features and build interactions, and different graph learning tasks require different ranges of node interactions. In this work, we explore the capacity of GNNs to capture interactions between nodes under contexts with different complexities. We discover that GNNs are usually unable to capture the most informative kinds of interaction styles for diverse graph learning tasks, and thus name this phenomenon as GNNs' representation bottleneck. As a response, we demonstrate that the inductive bias introduced by existing graph construction mechanisms can prevent GNNs from learning interactions of the most appropriate complexity, i.e., resulting in the representation bottleneck. To address that limitation, we propose a novel graph rewiring approach based on interaction patterns learned by GNNs to adjust the receptive fields of each node dynamically. Extensive experiments on both real-world and synthetic datasets prove the effectiveness of our algorithm to alleviate the representation bottleneck and its superiority to enhance the performance of GNNs over state-of-the-art graph rewiring baselines.


Molformer: Motif-based Transformer on 3D Heterogeneous Molecular Graphs

arXiv.org Artificial Intelligence

Procuring expressive molecular representations underpins AI-driven molecule design and scientific discovery. The research mainly focuses on atom-level homogeneous molecular graphs, ignoring the rich information in subgraphs or motifs. However, it has been widely accepted that substructures play a dominant role in identifying and determining molecular properties. To address such issues, we formulate heterogeneous molecular graphs (HMGs), and introduce a novel architecture to exploit both molecular motifs and 3D geometry. Precisely, we extract functional groups as motifs for small molecules and employ reinforcement learning to adaptively select quaternary amino acids as motif candidates for proteins. Then HMGs are constructed with both atom-level and motif-level nodes. To better accommodate those HMGs, we introduce a variant of Transformer named Molformer, which adopts a heterogeneous self-attention layer to distinguish the interactions between multi-level nodes. Besides, it is also coupled with a multi-scale mechanism to capture fine-grained local patterns with increasing contextual scales. An attentive farthest point sampling algorithm is also proposed to obtain the molecular representations. We validate Molformer across a broad range of domains, including quantum chemistry, physiology, and biophysics. Extensive experiments show that Molformer outperforms or achieves the comparable performance of several state-of-the-art baselines. Our work provides a promising way to utilize informative motifs from the perspective of multi-level graph construction.


STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension

arXiv.org Artificial Intelligence

Abstractive dialogue summarization has long been viewed as an important standalone task in natural language processing, but no previous work has explored the possibility of whether abstractive dialogue summarization can also be used as a means to boost an NLP system's performance on other important dialogue comprehension tasks. In this paper, we propose a novel type of dialogue summarization task - STRUctured DiaLoguE Summarization - that can help pre-trained language models to better understand dialogues and improve their performance on important dialogue comprehension tasks. We further collect human annotations of STRUDEL summaries over 400 dialogues and introduce a new STRUDEL dialogue comprehension modeling framework that integrates STRUDEL into a graph-neural-network-based dialogue reasoning module over transformer encoder language models to improve their dialogue comprehension abilities. In our empirical experiments on two important downstream dialogue comprehension tasks - dialogue question answering and dialogue response prediction - we show that our STRUDEL dialogue comprehension model can significantly improve the dialogue comprehension performance of transformer encoder language models.


BookSum: A Collection of Datasets for Long-form Narrative Summarization

arXiv.org Artificial Intelligence

The majority of available text summarization datasets include short-form source documents that lack long-range causal and temporal dependencies, and often contain strong layout and stylistic biases. While relevant, such datasets will offer limited challenges for future generations of text summarization systems. We address these issues by introducing BookSum, a collection of datasets for long-form narrative summarization. Our dataset covers source documents from the literature domain, such as novels, plays and stories, and includes highly abstractive, human written summaries on three levels of granularity of increasing difficulty: paragraph-, chapter-, and book-level. The domain and structure of our dataset poses a unique set of challenges for summarization systems, which include: processing very long documents, non-trivial causal and temporal dependencies, and rich discourse structures. To facilitate future work, we trained and evaluated multiple extractive and abstractive summarization models as baselines for our dataset.


CREATIVESUMM: Shared Task on Automatic Summarization for Creative Writing

arXiv.org Artificial Intelligence

This paper introduces the shared task of summarizing documents in several creative domains, namely literary texts, movie scripts, and television scripts. Summarizing these creative documents requires making complex literary interpretations, as well as understanding non-trivial temporal dependencies in texts containing varied styles of plot development and narrative structure. This poses unique challenges and is yet underexplored for text summarization systems. In this shared task, we introduce four sub-tasks and their corresponding datasets, focusing on summarizing books, movie scripts, primetime television scripts, and daytime soap opera scripts. We detail the process of curating these datasets for the task, as well as the metrics used for the evaluation of the submissions. As part of the CREATIVESUMM workshop at COLING 2022, the shared task attracted 18 submissions in total. We discuss the submissions and the baselines for each sub-task in this paper, along with directions for facilitating future work in the field.


Uni-Parser: Unified Semantic Parser for Question Answering on Knowledge Base and Database

arXiv.org Artificial Intelligence

Parsing natural language questions into executable logical forms is a useful and interpretable way to perform question answering on structured data such as knowledge bases (KB) or databases (DB). However, existing approaches on semantic parsing cannot adapt to both modalities, as they suffer from the exponential growth of the logical form candidates and can hardly generalize to unseen data. In this work, we propose Uni-Parser, a unified semantic parser for question answering (QA) on both KB and DB. We introduce the primitive (relation and entity in KB, and table name, column name and cell value in DB) as an essential element in our framework. The number of primitives grows linearly with the number of retrieved relations in KB and DB, preventing us from dealing with exponential logic form candidates. We leverage the generator to predict final logical forms by altering and composing topranked primitives with different operations (e.g. select, where, count). With sufficiently pruned search space by a contrastive primitive ranker, the generator is empowered to capture the composition of primitives enhancing its generalization ability. We achieve competitive results on multiple KB and DB QA benchmarks more efficiently, especially in the compositional and zero-shot settings.


CONFIT: Toward Faithful Dialogue Summarization with Linguistically-Informed Contrastive Fine-tuning

arXiv.org Artificial Intelligence

Factual inconsistencies in generated summaries severely limit the practical applications of abstractive dialogue summarization. Although significant progress has been achieved by using pre-trained models, substantial amounts of hallucinated content are found during the human evaluation. Pre-trained models are most commonly fine-tuned with cross-entropy loss for text summarization, which may not be an optimal strategy. In this work, we provide a typology of factual errors with annotation data to highlight the types of errors and move away from a binary understanding of factuality. We further propose a training strategy that improves the factual consistency and overall quality of summaries via a novel contrastive fine-tuning, called ConFiT. Based on our linguistically-informed typology of errors, we design different modular objectives that each target a specific type. Specifically, we utilize hard negative samples with errors to reduce the generation of factual inconsistency. In order to capture the key information between speakers, we also design a dialogue-specific loss. Using human evaluation and automatic faithfulness metrics, we show that our model significantly reduces all kinds of factual errors on the dialogue summarization, SAMSum corpus. Moreover, our model could be generalized to the meeting summarization, AMI corpus, and it produces significantly higher scores than most of the baselines on both datasets regarding word-overlap metrics.


A Transfer Learning Pipeline for Educational Resource Discovery with Application in Leading Paragraph Generation

arXiv.org Artificial Intelligence

Effective human learning depends on a wide selection of educational materials that align with the learner's current understanding of the topic. While the Internet has revolutionized human learning or education, a substantial resource accessibility barrier still exists. Namely, the excess of online information can make it challenging to navigate and discover high-quality learning materials. In this paper, we propose the educational resource discovery (ERD) pipeline that automates web resource discovery for novel domains. The pipeline consists of three main steps: data collection, feature extraction, and resource classification. We start with a known source domain and conduct resource discovery on two unseen target domains via transfer learning. We first collect frequent queries from a set of seed documents and search on the web to obtain candidate resources, such as lecture slides and introductory blog posts. Then we introduce a novel pretrained information retrieval deep neural network model, query-document masked language modeling (QD-MLM), to extract deep features of these candidate resources. We apply a tree-based classifier to decide whether the candidate is a positive learning resource. The pipeline achieves F1 scores of 0.94 and 0.82 when evaluated on two similar but novel target domains. Finally, we demonstrate how this pipeline can benefit an application: leading paragraph generation for surveys. This is the first study that considers various web resources for survey generation, to the best of our knowledge. We also release a corpus of 39,728 manually labeled web resources and 659 queries from NLP, Computer Vision (CV), and Statistics (STATS).


GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing

arXiv.org Artificial Intelligence

We present GraPPa, an effective pre-training approach for table semantic parsing that learns a compositional inductive bias in the joint representations of textual and tabular data. We construct synthetic question-SQL pairs over high-quality tables via a synchronous context-free grammar (SCFG) induced from existing text-to-SQL datasets. We pre-train our model on the synthetic data using a novel text-schema linking objective that predicts the syntactic role of a table field in the SQL for each question-SQL pair. To maintain the model's ability to represent real-world data, we also include masked language modeling (MLM) over several existing table-and-language datasets to regularize the pre-training process. On four popular fully supervised and weakly supervised table semantic parsing benchmarks, GraPPa significantly outperforms RoBERTa-large as the feature representation layers and establishes new state-of-the-art results on all of them.