Not enough data to create a plot.
Try a different view from the menu above.
Radaideh, Majdi I.
Opening the Black-Box: Symbolic Regression with Kolmogorov-Arnold Networks for Energy Applications
Panczyk, Nataly R., Erdem, Omer F., Radaideh, Majdi I.
While most modern machine learning methods offer speed and accuracy, few promise interpretability or explainability -- two key features necessary for highly sensitive industries, like medicine, finance, and engineering. Using eight datasets representative of one especially sensitive industry, nuclear power, this work compares a traditional feedforward neural network (FNN) to a Kolmogorov-Arnold Network (KAN). We consider not only model performance and accuracy, but also interpretability through model architecture and explainability through a post-hoc SHAP analysis. In terms of accuracy, we find KANs and FNNs comparable across all datasets, when output dimensionality is limited. KANs, which transform into symbolic equations after training, yield perfectly interpretable models while FNNs remain black-boxes. Finally, using the post-hoc explainability results from Kernel SHAP, we find that KANs learn real, physical relations from experimental data, while FNNs simply produce statistically accurate results. Overall, this analysis finds KANs a promising alternative to traditional machine learning methods, particularly in applications requiring both accuracy and comprehensibility.
Multi-objective Combinatorial Methodology for Nuclear Reactor Site Assessment: A Case Study for the United States
Erdem, Omer, Daley, Kevin, Hoelzle, Gabrielle, Radaideh, Majdi I.
As the global demand for clean energy intensifies to achieve sustainability and net-zero carbon emission goals, nuclear energy stands out as a reliable solution. However, fully harnessing its potential requires overcoming key challenges, such as the high capital costs associated with nuclear power plants (NPPs). One promising strategy to mitigate these costs involves repurposing sites with existing infrastructure, including coal power plant (CPP) locations, which offer pre-built facilities and utilities. Additionally, brownfield sites - previously developed or underutilized lands often impacted by industrial activity - present another compelling alternative. These sites typically feature valuable infrastructure that can significantly reduce the costs of NPP development. This study introduces a novel multi-objective optimization methodology, leveraging combinatorial search to evaluate over 30,000 potential NPP sites in the United States. Our approach addresses gaps in the current practice of assigning pre-determined weights to each site attribute that could lead to bias in the ranking. Each site is assigned a performance-based score, derived from a detailed combinatorial analysis of its site attributes. The methodology generates a comprehensive database comprising site locations (inputs), attributes (outputs), site score (outputs), and the contribution of each attribute to the site score (outputs). We then use this database to train a machine learning neural network model, enabling rapid predictions of nuclear siting suitability across any location in the contiguous United States.
Distance Preserving Machine Learning for Uncertainty Aware Accelerator Capacitance Predictions
Goldenberg, Steven, Schram, Malachi, Rajput, Kishansingh, Britton, Thomas, Pappas, Chris, Lu, Dan, Walden, Jared, Radaideh, Majdi I., Cousineau, Sarah, Harave, Sudarshan
Providing accurate uncertainty estimations is essential for producing reliable machine learning models, especially in safety-critical applications such as accelerator systems. Gaussian process models are generally regarded as the gold standard method for this task, but they can struggle with large, high-dimensional datasets. Combining deep neural networks with Gaussian process approximation techniques have shown promising results, but dimensionality reduction through standard deep neural network layers is not guaranteed to maintain the distance information necessary for Gaussian process models. We build on previous work by comparing the use of the singular value decomposition against a spectral-normalized dense layer as a feature extractor for a deep neural Gaussian process approximation model and apply it to a capacitance prediction problem for the High Voltage Converter Modulators in the Oak Ridge Spallation Neutron Source. Our model shows improved distance preservation and predicts in-distribution capacitance values with less than 1% error.
Multi-module based CVAE to predict HVCM faults in the SNS accelerator
Alanazi, Yasir, Schram, Malachi, Rajput, Kishansingh, Goldenberg, Steven, Vidyaratne, Lasitha, Pappas, Chris, Radaideh, Majdi I., Lu, Dan, Ramuhalli, Pradeep, Cousineau, Sarah
We present a multi-module framework based on Conditional Variational Autoencoder (CVAE) to detect anomalies in the power signals coming from multiple High Voltage Converter Modulators (HVCMs). We condition the model with the specific modulator type to capture different representations of the normal waveforms and to improve the sensitivity of the model to identify a specific type of fault when we have limited samples for a given module type. We studied several neural network (NN) architectures for our CVAE model and evaluated the model performance by looking at their loss landscape for stability and generalization. Our results for the Spallation Neutron Source (SNS) experimental data show that the trained model generalizes well to detecting multiple fault types for several HVCM module types. The results of this study can be used to improve the HVCM reliability and overall SNS uptime