Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
R. Srikant
Adding One Neuron Can Eliminate All Bad Local Minima
SHIYU LIANG, Ruoyu Sun, Jason D. Lee, R. Srikant
One of the main difficulties in analyzing neural networks is the non-convexity of the loss function which may have many bad local minima. In this paper, we study the landscape of neural networks for binary classification tasks. Under mild assumptions, we prove that after adding one special neuron with a skip connection to the output, or one special neuron per layer, every local minimum is a global minimum.
Finite-Time Performance Bounds and Adaptive Learning Rate Selection for Two Time-Scale Reinforcement Learning
Harsh Gupta, R. Srikant, Lei Ying
We study two time-scale linear stochastic approximation algorithms, which can be used to model well-known reinforcement learning algorithms such as GTD, GTD2, and TDC. We present finite-time performance bounds for the case where the learning rate is fixed. The key idea in obtaining these bounds is to use a Lyapunov function motivated by singular perturbation theory for linear differential equations. We use the bound to design an adaptive learning rate scheme which significantly improves the convergence rate over the known optimal polynomial decay rule in our experiments, and can be used to potentially improve the performance of any other schedule where the learning rate is changed at pre-determined time instants.
Adding One Neuron Can Eliminate All Bad Local Minima
SHIYU LIANG, Ruoyu Sun, Jason D. Lee, R. Srikant
One of the main difficulties in analyzing neural networks is the non-convexity of the loss function which may have many bad local minima. In this paper, we study the landscape of neural networks for binary classification tasks. Under mild assumptions, we prove that after adding one special neuron with a skip connection to the output, or one special neuron per layer, every local minimum is a global minimum.
Finite-Time Performance Bounds and Adaptive Learning Rate Selection for Two Time-Scale Reinforcement Learning
Harsh Gupta, R. Srikant, Lei Ying
We study two time-scale linear stochastic approximation algorithms, which can be used to model well-known reinforcement learning algorithms such as GTD, GTD2, and TDC. We present finite-time performance bounds for the case where the learning rate is fixed. The key idea in obtaining these bounds is to use a Lyapunov function motivated by singular perturbation theory for linear differential equations. We use the bound to design an adaptive learning rate scheme which significantly improves the convergence rate over the known optimal polynomial decay rule in our experiments, and can be used to potentially improve the performance of any other schedule where the learning rate is changed at pre-determined time instants.