Not enough data to create a plot.
Try a different view from the menu above.
Quintero-Rincon, Antonio
Effect sizes as a statistical feature-selector-based learning to detect breast cancer
Masino, Nicolas, Quintero-Rincon, Antonio
Breast cancer detection is still an open research field, despite a tremendous effort devoted to work in this area. Effect size is a statistical concept that measures the strength of the relationship between two variables on a numeric scale. Feature selection is widely used to reduce the dimensionality of data by selecting only a subset of predictor variables to improve a learning model. In this work, an algorithm and experimental results demonstrate the feasibility of developing a statistical featureselector-based learning tool capable of reducing the data dimensionality using parametric effect size measures from features extracted from cell nuclei images. The SVM classifier with a linear kernel as a learning tool achieved an accuracy of over 90%. These excellent results suggest that the effect size is within the standards of the feature-selector methods. Keywords: Effect Size Cohen's d Standardized Mean Difference Feature selection Breast Cancer
Epileptic seizure prediction using Pearson's product-moment correlation coefficient of a linear classifier from generalized Gaussian modeling
Quintero-Rincon, Antonio, D'Giano, Carlos, Risk, Marcelo
To predict an epileptic event means the ability to determine in advance the time of the seizure with the highest possible accuracy. A correct prediction benchmark for epilepsy events in clinical applications is a typical problem in biomedical signal processing that helps to an appropriate diagnosis and treatment of this disease. In this work, we use Pearson's product-moment correlation coefficient from generalized Gaussian distribution parameters coupled with a linear-based classifier to predict between seizure and non-seizure events in epileptic EEG signals. The performance in 36 epileptic events from 9 patients showing good performance with 100% of effectiveness for sensitivity and specificity greater than 83% for seizures events in all brain rhythms. Pearson's test suggests that all brain rhythms are highly correlated in non-seizure events but no during the seizure events. This suggests that our model can be scaled with the Pearson's product-moment correlation coefficient for the detection of epileptic seizures.