Quan, Xiaojun
Knowledge Fusion of Large Language Models
Wan, Fanqi, Huang, Xinting, Cai, Deng, Quan, Xiaojun, Bi, Wei, Shi, Shuming
While training large language models (LLMs) from scratch can generate models with distinct functionalities and strengths, it comes at significant costs and may result in redundant capabilities. Alternatively, a cost-effective and compelling approach is to merge existing pre-trained LLMs into a more potent model. However, due to the varying architectures of these LLMs, directly blending their weights is impractical. In this paper, we introduce the notion of knowledge fusion for LLMs, aimed at combining the capabilities of existing LLMs and transferring them into a single LLM. By leveraging the generative distributions of source LLMs, we externalize their collective knowledge and unique strengths, thereby potentially elevating the capabilities of the target model beyond those of any individual source LLM. We validate our approach using three popular LLMs with different architectures--Llama-2, MPT, and OpenLLaMA--across various benchmarks and tasks. Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation. Our code, model weights, and data are public at \url{https://github.com/fanqiwan/FuseLLM}.
Knowledge Distillation for Closed-Source Language Models
Chen, Hongzhan, Quan, Xiaojun, Chen, Hehong, Yan, Ming, Zhang, Ji
Closed-source language models such as GPT-4 have achieved remarkable performance. Many recent studies focus on enhancing the capabilities of smaller models through knowledge distillation from closed-source language models. However, due to the incapability to directly access the weights, hidden states, and output distributions of these closed-source models, the distillation can only be performed by fine-tuning smaller models with data samples generated by closed-source language models, which constrains the effectiveness of knowledge distillation. In this paper, we propose to estimate the output distributions of closed-source language models within a Bayesian estimation framework, involving both prior and posterior estimation. The prior estimation aims to derive a prior distribution by utilizing the corpus generated by closed-source language models, while the posterior estimation employs a proxy model to update the prior distribution and derive a posterior distribution. By leveraging the estimated output distribution of closed-source language models, traditional knowledge distillation can be executed. Experimental results demonstrate that our method surpasses the performance of current models directly fine-tuned on data generated by closed-source language models.
MCC-KD: Multi-CoT Consistent Knowledge Distillation
Chen, Hongzhan, Wu, Siyue, Quan, Xiaojun, Wang, Rui, Yan, Ming, Zhang, Ji
Large language models (LLMs) have showcased remarkable capabilities in complex reasoning through chain of thought (CoT) prompting. Recently, there has been a growing interest in transferring these reasoning abilities from LLMs to smaller models. However, achieving both the diversity and consistency in rationales presents a challenge. In this paper, we focus on enhancing these two aspects and propose Multi-CoT Consistent Knowledge Distillation (MCC-KD) to efficiently distill the reasoning capabilities. In MCC-KD, we generate multiple rationales for each question and enforce consistency among the corresponding predictions by minimizing the bidirectional KL-divergence between the answer distributions. We investigate the effectiveness of MCC-KD with different model architectures (LLaMA/FlanT5) and various model scales (3B/7B/11B/13B) on both mathematical reasoning and commonsense reasoning benchmarks. The empirical results not only confirm MCC-KD's superior performance on in-distribution datasets but also highlight its robust generalization ability on out-of-distribution datasets.
PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for Personality Detection
Yang, Tao, Shi, Tianyuan, Wan, Fanqi, Quan, Xiaojun, Wang, Qifan, Wu, Bingzhe, Wu, Jiaxiang
Recent advances in large language models (LLMs), such as ChatGPT, have showcased remarkable zero-shot performance across various NLP tasks. However, the potential of LLMs in personality detection, which involves identifying an individual's personality from their written texts, remains largely unexplored. Drawing inspiration from Psychological Questionnaires, which are carefully designed by psychologists to evaluate individual personality traits through a series of targeted items, we argue that these items can be regarded as a collection of well-structured chain-of-thought (CoT) processes. By incorporating these processes, LLMs can enhance their capabilities to make more reasonable inferences on personality from textual input. In light of this, we propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner. In particular, we employ a LLM as an AI assistant with a specialization in text analysis. We prompt the assistant to rate individual items at each turn and leverage the historical rating results to derive a conclusive personality preference. Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection, achieving an average F1 score improvement of 4.23/10.63 points on two benchmark datasets compared to the standard prompting method. Our code is available at https://github.com/TaoYang225/PsyCoT.
Explore-Instruct: Enhancing Domain-Specific Instruction Coverage through Active Exploration
Wan, Fanqi, Huang, Xinting, Yang, Tao, Quan, Xiaojun, Bi, Wei, Shi, Shuming
Instruction-tuning can be substantially optimized through enhanced diversity, resulting in models capable of handling a broader spectrum of tasks. However, existing data employed for such tuning often exhibit an inadequate coverage of individual domains, limiting the scope for nuanced comprehension and interactions within these areas. To address this deficiency, we propose Explore-Instruct, a novel approach to enhance the data coverage to be used in domain-specific instruction-tuning through active exploration via Large Language Models (LLMs). Built upon representative domain use cases, Explore-Instruct explores a multitude of variations or possibilities by implementing a search algorithm to obtain diversified and domain-focused instruction-tuning data. Our data-centric analysis validates the effectiveness of this proposed approach in improving domain-specific instruction coverage. Moreover, our model's performance demonstrates considerable advancements over multiple baselines, including those utilizing domain-specific data enhancement. Our findings offer a promising opportunity to improve instruction coverage, especially in domain-specific contexts, thereby advancing the development of adaptable language models. Our code, model weights, and data are public at \url{https://github.com/fanqiwan/Explore-Instruct}.
Dual-Feedback Knowledge Retrieval for Task-Oriented Dialogue Systems
Shi, Tianyuan, Li, Liangzhi, Lin, Zijian, Yang, Tao, Quan, Xiaojun, Wang, Qifan
Efficient knowledge retrieval plays a pivotal role in ensuring the success of end-to-end task-oriented dialogue systems by facilitating the selection of relevant information necessary to fulfill user requests. However, current approaches generally integrate knowledge retrieval and response generation, which poses scalability challenges when dealing with extensive knowledge bases. Taking inspiration from open-domain question answering, we propose a retriever-generator architecture that harnesses a retriever to retrieve pertinent knowledge and a generator to generate system responses.~Due to the lack of retriever training labels, we propose relying on feedback from the generator as pseudo-labels to train the retriever. To achieve this, we introduce a dual-feedback mechanism that generates both positive and negative feedback based on the output of the generator. Our method demonstrates superior performance in task-oriented dialogue tasks, as evidenced by experimental results on three benchmark datasets.
Retrieval-Generation Alignment for End-to-End Task-Oriented Dialogue System
Shen, Weizhou, Gao, Yingqi, Huang, Canbin, Wan, Fanqi, Quan, Xiaojun, Bi, Wei
Developing an efficient retriever to retrieve knowledge from a large-scale knowledge base (KB) is critical for task-oriented dialogue systems to effectively handle localized and specialized tasks. However, widely used generative models such as T5 and ChatGPT often struggle to differentiate subtle differences among the retrieved KB records when generating responses, resulting in suboptimal quality of generated responses. In this paper, we propose the application of maximal marginal likelihood to train a perceptive retriever by utilizing signals from response generation for supervision. In addition, our approach goes beyond considering solely retrieved entities and incorporates various meta knowledge to guide the generator, thus improving the utilization of knowledge. We evaluate our approach on three task-oriented dialogue datasets using T5 and ChatGPT as the backbone models. The results demonstrate that when combined with meta knowledge, the response generator can effectively leverage high-quality knowledge records from the retriever and enhance the quality of generated responses. The codes and models of this paper are available at https://github.com/shenwzh3/MK-TOD.
Joint Generator-Ranker Learning for Natural Language Generation
Shen, Weizhou, Gong, Yeyun, Shen, Yelong, Wang, Song, Quan, Xiaojun, Duan, Nan, Chen, Weizhu
Generate-then-rank is a widely used mechanism for text generation, where a generator produces multiple text candidates and a ranker chooses the best one among the text candidates. However, existing methods usually train the generator and the ranker individually, neglecting the mutual feedback that could further enhance the generation quality. To tackle this limitation, we propose JGR, a novel joint training algorithm that integrates the generator and the ranker in a single framework. JGR optimizes the generator with a hybrid objective that combines data likelihood and ranker reward, and trains the ranker with a contrastive loss that compares the generator outputs. By iteratively updating the generator and the ranker, JGR can effectively harmonize their learning and enhance their quality jointly. We evaluate JGR on various text generation tasks and demonstrate that it surpasses existing methods on four public datasets across three common generation scenarios. Our code and models are publicly available at https://github.com/microsoft/ProphetNet/tree/master/JGR.
Disentangled Phonetic Representation for Chinese Spelling Correction
Liang, Zihong, Quan, Xiaojun, Wang, Qifan
Chinese Spelling Correction (CSC) aims to detect and correct erroneous characters in Chinese texts. Although efforts have been made to introduce phonetic information (Hanyu Pinyin) in this task, they typically merge phonetic representations with character representations, which tends to weaken the representation effect of normal texts. In this work, we propose to disentangle the two types of features to allow for direct interaction between textual and phonetic information. To learn useful phonetic representations, we introduce a pinyin-to-character objective to ask the model to predict the correct characters based solely on phonetic information, where a separation mask is imposed to disable attention from phonetic input to text. To avoid overfitting the phonetics, we further design a self-distillation module to ensure that semantic information plays a major role in the prediction. Extensive experiments on three CSC benchmarks demonstrate the superiority of our method in using phonetic information.
AD-KD: Attribution-Driven Knowledge Distillation for Language Model Compression
Wu, Siyue, Chen, Hongzhan, Quan, Xiaojun, Wang, Qifan, Wang, Rui
Knowledge distillation has attracted a great deal of interest recently to compress pre-trained language models. However, existing knowledge distillation methods suffer from two limitations. First, the student model simply imitates the teacher's behavior while ignoring the underlying reasoning. Second, these methods usually focus on the transfer of sophisticated model-specific knowledge but overlook data-specific knowledge. In this paper, we present a novel attribution-driven knowledge distillation approach, which explores the token-level rationale behind the teacher model based on Integrated Gradients (IG) and transfers attribution knowledge to the student model. To enhance the knowledge transfer of model reasoning and generalization, we further explore multi-view attribution distillation on all potential decisions of the teacher. Comprehensive experiments are conducted with BERT on the GLUE benchmark. The experimental results demonstrate the superior performance of our approach to several state-of-the-art methods.