Not enough data to create a plot.
Try a different view from the menu above.
Quan, Pengrui
Foundation Models for CPS-IoT: Opportunities and Challenges
Baris, Ozan, Chen, Yizhuo, Dong, Gaofeng, Han, Liying, Kimura, Tomoyoshi, Quan, Pengrui, Wang, Ruijie, Wang, Tianchen, Abdelzaher, Tarek, Bergés, Mario, Liang, Paul Pu, Srivastava, Mani
Methods from machine learning (ML) have transformed the implementation of Perception-Cognition-Communication-Action loops in Cyber-Physical Systems (CPS) and the Internet of Things (IoT), replacing mechanistic and basic statistical models with those derived from data. However, the first generation of ML approaches, which depend on supervised learning with annotated data to create task-specific models, faces significant limitations in scaling to the diverse sensor modalities, deployment configurations, application tasks, and operating dynamics characterizing real-world CPS-IoT systems. The success of task-agnostic foundation models (FMs), including multimodal large language models (LLMs), in addressing similar challenges across natural language, computer vision, and human speech has generated considerable enthusiasm for and exploration of FMs and LLMs as flexible building blocks in CPS-IoT analytics pipelines, promising to reduce the need for costly task-specific engineering. Nonetheless, a significant gap persists between the current capabilities of FMs and LLMs in the CPS-IoT domain and the requirements they must meet to be viable for CPS-IoT applications. In this paper, we analyze and characterize this gap through a thorough examination of the state of the art and our research, which extends beyond it in various dimensions. Based on the results of our analysis and research, we identify essential desiderata that CPS-IoT domain-specific FMs and LLMs must satisfy to bridge this gap. We also propose actions by CPS-IoT researchers to collaborate in developing key community resources necessary for establishing FMs and LLMs as foundational tools for the next generation of CPS-IoT systems.
SensorBench: Benchmarking LLMs in Coding-Based Sensor Processing
Quan, Pengrui, Ouyang, Xiaomin, Jeyakumar, Jeya Vikranth, Wang, Ziqi, Xing, Yang, Srivastava, Mani
Effective processing, interpretation, and management of sensor data have emerged as a critical component of cyber-physical systems. Traditionally, processing sensor data requires profound theoretical knowledge and proficiency in signal-processing tools. However, recent works show that Large Language Models (LLMs) have promising capabilities in processing sensory data, suggesting their potential as copilots for developing sensing systems. To explore this potential, we construct a comprehensive benchmark, SensorBench, to establish a quantifiable objective. The benchmark incorporates diverse real-world sensor datasets for various tasks. The results show that while LLMs exhibit considerable proficiency in simpler tasks, they face inherent challenges in processing compositional tasks with parameter selections compared to engineering experts. Additionally, we investigate four prompting strategies for sensor processing and show that self-verification can outperform all other baselines in 48% of tasks. Our study provides a comprehensive benchmark and prompting analysis for future developments, paving the way toward an LLM-based sensor processing copilot.
An Efficient Newton Method for Extreme Similarity Learning with Nonlinear Embeddings
Yuan, Bowen, Li, Yu-Sheng, Quan, Pengrui, Lin, Chih-Jen
We study the problem of learning similarity by using nonlinear embedding models (e.g., neural networks) from all possible pairs. This problem is well-known for its difficulty of training with the extreme number of pairs. Existing optimization methods extended from stochastic gradient methods suffer from slow convergence and high complexity per pass of all possible pairs. Inspired by some recent works reporting that Newton methods are competitive for training certain types of neural networks, in this work, we novelly apply the Newton method for this problem. A prohibitive cost depending on the extreme number of pairs occurs if the Newton method is directly applied. We propose an efficient algorithm which successfully eliminates the cost. Our proposed algorithm can take advantage of second-order information and lower time complexity per pass of all possible pairs. Experiments conducted on large-scale data sets demonstrate that the proposed algorithm is more efficient than existing algorithms.