Not enough data to create a plot.
Try a different view from the menu above.
Quan, Fengyu
Generating 6-D Trajectories for Omnidirectional Multirotor Aerial Vehicles in Cluttered Environments
Liu, Peiyan, Shen, Yuanzhe, Liu, Yueqian, Quan, Fengyu, Wang, Can, Chen, Haoyao
As fully-actuated systems, omnidirectional multirotor aerial vehicles (OMAVs) have more flexible maneuverability and advantages in aggressive flight in cluttered environments than traditional underactuated MAVs. %Due to the high dimensionality of configuration space, making the designed trajectory generation algorithm efficient is challenging. This paper aims to achieve safe flight of OMAVs in cluttered environments. Considering existing static obstacles, an efficient optimization-based framework is proposed to generate 6-D $SE(3)$ trajectories for OMAVs. Given the kinodynamic constraints and the 3D collision-free region represented by a series of intersecting convex polyhedra, the proposed method finally generates a safe and dynamically feasible 6-D trajectory. First, we parameterize the vehicle's attitude into a free 3D vector using stereographic projection to eliminate the constraints inherent in the $SO(3)$ manifold, while the complete $SE(3)$ trajectory is represented as a 6-D polynomial in time without inherent constraints. The vehicle's shape is modeled as a cuboid attached to the body frame to achieve whole-body collision evaluation. Then, we formulate the origin trajectory generation problem as a constrained optimization problem. The original constrained problem is finally transformed into an unconstrained one that can be solved efficiently. To verify the proposed framework's performance, simulations and real-world experiments based on a tilt-rotor hexarotor aerial vehicle are carried out.
MSI-NeRF: Linking Omni-Depth with View Synthesis through Multi-Sphere Image aided Generalizable Neural Radiance Field
Yan, Dongyu, Huang, Guanyu, Quan, Fengyu, Chen, Haoyao
Panoramic observation using fisheye cameras is significant in robot perception, reconstruction, and remote operation. However, panoramic images synthesized by traditional methods lack depth information and can only provide three degrees-of-freedom (3DoF) rotation rendering in virtual reality applications. To fully preserve and exploit the parallax information within the original fisheye cameras, we introduce MSI-NeRF, which combines deep learning omnidirectional depth estimation and novel view rendering. We first construct a multi-sphere image as a cost volume through feature extraction and warping of the input images. It is then processed by geometry and appearance decoders, respectively. Unlike methods that regress depth maps directly, we further build an implicit radiance field using spatial points and interpolated 3D feature vectors as input. In this way, we can simultaneously realize omnidirectional depth estimation and 6DoF view synthesis. Our method is trained in a semi-self-supervised manner. It does not require target view images and only uses depth data for supervision. Our network has the generalization ability to reconstruct unknown scenes efficiently using only four images. Experimental results show that our method outperforms existing methods in depth estimation and novel view synthesis tasks.
Active Implicit Object Reconstruction using Uncertainty-guided Next-Best-View Optimization
Yan, Dongyu, Liu, Jianheng, Quan, Fengyu, Chen, Haoyao, Fu, Mengmeng
Actively planning sensor views during object reconstruction is crucial for autonomous mobile robots. An effective method should be able to strike a balance between accuracy and efficiency. In this paper, we propose a seamless integration of the emerging implicit representation with the active reconstruction task. We build an implicit occupancy field as our geometry proxy. While training, the prior object bounding box is utilized as auxiliary information to generate clean and detailed reconstructions. To evaluate view uncertainty, we employ a sampling-based approach that directly extracts entropy from the reconstructed occupancy probability field as our measure of view information gain. This eliminates the need for additional uncertainty maps or learning. Unlike previous methods that compare view uncertainty within a finite set of candidates, we aim to find the next-best-view (NBV) on a continuous manifold. Leveraging the differentiability of the implicit representation, the NBV can be optimized directly by maximizing the view uncertainty using gradient descent. It significantly enhances the method's adaptability to different scenarios. Simulation and real-world experiments demonstrate that our approach effectively improves reconstruction accuracy and efficiency of view planning in active reconstruction tasks. The proposed system will open source at https://github.com/HITSZ-NRSL/ActiveImplicitRecon.git.
Proxy-based Super Twisting Control Algorithm for Aerial Manipulators
Hua, Zhengyu, Xu, Bowen, Xing, Li, Quan, Fengyu, Xiong, Xiaogang, Chen, Haoyao
Aerial manipulators are composed of an aerial multi-rotor that is equipped with a 6-DOF servo robot arm. To achieve precise position and attitude control during the arm's motion, it is critical for the system to have high performance control capabilities. However, the coupling effect between the multi-rotor UAVs' movement poses a challenge to the entire system's control capability. We have proposed a new proxy-based super twisting control approach for quadrotor UAVs that mitigates the disturbance caused by moving manipulators. This approach helps improve the stability of the aerial manipulation system when carrying out hovering or trajectory tracking tasks. The controller's effectiveness has been validated through numerical simulation and further tested in the Gazebo simulation environment.