Qin, Yuzhe
DexPoint: Generalizable Point Cloud Reinforcement Learning for Sim-to-Real Dexterous Manipulation
Qin, Yuzhe, Huang, Binghao, Yin, Zhao-Heng, Su, Hao, Wang, Xiaolong
We propose a sim-to-real framework for dexterous manipulation which can generalize to new objects of the same category in the real world. The key of our framework is to train the manipulation policy with point cloud inputs and dexterous hands. We propose two new techniques to enable joint learning on multiple objects and sim-to-real generalization: (i) using imagined hand point clouds as augmented inputs; and (ii) designing novel contact-based rewards. We empirically evaluate our method using an Allegro Hand to grasp novel objects in both simulation and real world. To the best of our knowledge, this is the first policy learning-based framework that achieves such generalization results with dexterous hands. Our project page is available at https://yzqin.github.io/dexpoint
Composing Ensembles of Policies with Deep Reinforcement Learning
Qureshi, Ahmed H., Johnson, Jacob J., Qin, Yuzhe, Boots, Byron, Yip, Michael C.
Composition of elementary skills into complex behaviors to solve challenging problems is one of the key elements toward building intelligent machines. To date, there has been plenty of work on learning new policies or skills but almost no focus on composing them to perform complex decision-making. In this paper, we propose a policy ensemble composition framework that takes the robot's primitive policies and learns to compose them concurrently or sequentially through reinforcement learning. We evaluate our method in problems where traditional approaches either fail or exhibit high sample complexity to find a solution. We show that our method not only solves the problems that require both task and motion planning but also exhibits high data efficiency, which is currently one of the main limitations of reinforcement learning.