Plotting

 Qian, Zheng


Exploring Explainable Multi-player MCTS-minimax Hybrids in Board Game Using Process Mining

arXiv.org Artificial Intelligence

Monte-Carlo Tree Search (MCTS) is a family of sampling-based search algorithms widely used for online planning in sequential decision-making domains and at the heart of many recent advances in artificial intelligence. Understanding the behavior of MCTS agents is difficult for developers and users due to the frequently large and complex search trees that result from the simulation of many possible futures, their evaluations, and their relationships. This paper presents our ongoing investigation into potential explanations for the decision-making and behavior of MCTS. A weakness of MCTS is that it constructs a highly selective tree and, as a result, can miss crucial moves and fall into tactical traps. Full-width minimax search constitutes the solution. We integrate shallow minimax search into the rollout phase of multi-player MCTS and use process mining technique to explain agents' strategies in 3v3 checkers.


Fault diagnosis for PV arrays considering dust impact based on transformed graphical feature of characteristic curves and convolutional neural network with CBAM modules

arXiv.org Artificial Intelligence

Various faults can occur during the operation of PV arrays, and both the dust-affected operating conditions and various diode configurations make the faults more complicated. However, current methods for fault diagnosis based on I-V characteristic curves only utilize partial feature information and often rely on calibrating the field characteristic curves to standard test conditions (STC). It is difficult to apply it in practice and to accurately identify multiple complex faults with similarities in different blocking diodes configurations of PV arrays under the influence of dust. Therefore, a novel fault diagnosis method for PV arrays considering dust impact is proposed. In the preprocessing stage, the Isc-Voc normalized Gramian angular difference field (GADF) method is presented, which normalizes and transforms the resampled PV array characteristic curves from the field including I-V and P-V to obtain the transformed graphical feature matrices. Then, in the fault diagnosis stage, the model of convolutional neural network (CNN) with convolutional block attention modules (CBAM) is designed to extract fault differentiation information from the transformed graphical matrices containing full feature information and to classify faults. And different graphical feature transformation methods are compared through simulation cases, and different CNN-based classification methods are also analyzed. The results indicate that the developed method for PV arrays with different blocking diodes configurations under various operating conditions has high fault diagnosis accuracy and reliability.