Plotting

 Qi Zhang


Efficient Communication in Multi-Agent Reinforcement Learning via Variance Based Control

Neural Information Processing Systems

Multi-agent reinforcement learning (MARL) has recently received considerable attention due to its applicability to a wide range of real-world applications. However, achieving efficient communication among agents has always been an overarching problem in MARL. In this work, we propose Variance Based Control (VBC), a simple yet efficient technique to improve communication efficiency in MARL. By limiting the variance of the exchanged messages between agents during the training phase, the noisy component in the messages can be eliminated effectively, while the useful part can be preserved and utilized by the agents for better performance. Our evaluation using multiple MARL benchmarks indicates that our method achieves 2 10 lower in communication overhead than state-of-the-art MARL algorithms, while allowing agents to achieve better overall performance.


Efficient Communication in Multi-Agent Reinforcement Learning via Variance Based Control

Neural Information Processing Systems

Multi-agent reinforcement learning (MARL) has recently received considerable attention due to its applicability to a wide range of real-world applications. However, achieving efficient communication among agents has always been an overarching problem in MARL. In this work, we propose Variance Based Control (VBC), a simple yet efficient technique to improve communication efficiency in MARL. By limiting the variance of the exchanged messages between agents during the training phase, the noisy component in the messages can be eliminated effectively, while the useful part can be preserved and utilized by the agents for better performance. Our evaluation using multiple MARL benchmarks indicates that our method achieves 2 10 lower in communication overhead than state-of-the-art MARL algorithms, while allowing agents to achieve better overall performance.


A Learning Error Analysis for Structured Prediction with Approximate Inference

Neural Information Processing Systems

In this work, we try to understand the differences between exact and approximate inference algorithms in structured prediction. We compare the estimation and approximation error of both underestimate (e.g., greedy search) and overestimate (e.g., linear relaxation of integer programming) models. The result shows that, from the perspective of learning errors, performances of approximate inference could be as good as exact inference. The error analyses also suggest a new margin for existing learning algorithms. Empirical evaluations on text classification, sequential labelling and dependency parsing witness the success of approximate inference and the benefit of the proposed margin.