Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Pulkit Agrawal
Superposition of many models into one
Brian Cheung, Alexander Terekhov, Yubei Chen, Pulkit Agrawal, Bruno Olshausen
Superposition of many models into one
Brian Cheung, Alexander Terekhov, Yubei Chen, Pulkit Agrawal, Bruno Olshausen
We present a method for storing multiple models within a single set of parameters. Models can coexist in superposition and still be retrieved individually. In experiments with neural networks, we show that a surprisingly large number of models can be effectively stored within a single parameter instance. Furthermore, each of these models can undergo thousands of training steps without significantly interfering with other models within the superposition. This approach may be viewed as the online complement of compression: rather than reducing the size of a network after training, we make use of the unrealized capacity of a network during training.
Learning to Poke by Poking: Experiential Learning of Intuitive Physics
Pulkit Agrawal, Ashvin V. Nair, Pieter Abbeel, Jitendra Malik, Sergey Levine
We investigate an experiential learning paradigm for acquiring an internal model of intuitive physics. Our model is evaluated on a real-world robotic manipulation task that requires displacing objects to target locations by poking. The robot gathered over 400 hours of experience by executing more than 100K pokes on different objects. We propose a novel approach based on deep neural networks for modeling the dynamics of robot's interactions directly from images, by jointly estimating forward and inverse models of dynamics. The inverse model objective provides supervision to construct informative visual features, which the forward model can then predict and in turn regularize the feature space for the inverse model. The interplay between these two objectives creates useful, accurate models that can then be used for multi-step decision making. This formulation has the additional benefit that it is possible to learn forward models in an abstract feature space and thus alleviate the need of predicting pixels. Our experiments show that this joint modeling approach outperforms alternative methods.