Plotting

 Prateek Jain



Efficient Algorithms for Smooth Minimax Optimization

Neural Information Processing Systems

In terms of g(, y), we consider two settings - strongly convex and nonconvex - and improve upon the best known rates in both. For strongly-convex g(, y), y, we propose a new direct optimal algorithm combining Mirror-Prox and Nesterov's AGD, and show that it can find global optimum in Õ (1/k


Multiple Instance Learning for Efficient Sequential Data Classification on Resource-constrained Devices

Neural Information Processing Systems

We study the problem of fast and efficient classification of sequential data (such as time-series) on tiny devices, which is critical for various IoT related applications like audio keyword detection or gesture detection. Such tasks are cast as a standard classification task by sliding windows over the data stream to construct data points. Deploying such classification modules on tiny devices is challenging as predictions over sliding windows of data need to be invoked continuously at a high frequency. Each such predictor instance in itself is expensive as it evaluates large models over long windows of data. In this paper, we address this challenge by exploiting the following two observations about classification tasks arising in typical IoT related applications: (a) the "signature" of a particular class (e.g. an audio keyword) typically occupies a small fraction of the overall data, and (b) class signatures tend to be discernible early on in the data.



Shallow RNN: Accurate Time-series Classification on Resource Constrained Devices

Neural Information Processing Systems

Recurrent Neural Networks (RNNs) capture long dependencies and context, and hence are the key component of typical sequential data based tasks. However, the sequential nature of RNNs dictates a large inference cost for long sequences even if the hardware supports parallelization. To induce long-term dependencies, and yet admit parallelization, we introduce novel shallow RNNs. In this architecture, the first layer splits the input sequence and runs several independent RNNs.


Provable Tensor Factorization with Missing Data

Neural Information Processing Systems

We study the problem of low-rank tensor factorization in the presence of missing data. We ask the following question: how many sampled entries do we need, to efficiently and exactly reconstruct a tensor with a low-rank orthogonal decomposition? We propose a novel alternating minimization based method which iteratively refines estimates of the singular vectors.


Mixed Linear Regression with Multiple Components

Neural Information Processing Systems

In this paper, we study the mixed linear regression (MLR) problem, where the goal is to recover multiple underlying linear models from their unlabeled linear measurements. We propose a non-convex objective function which we show is locally strongly convex in the neighborhood of the ground truth. We use a tensor method for initialization so that the initial models are in the local strong convexity region. We then employ general convex optimization algorithms to minimize the objective function. To the best of our knowledge, our approach provides first exact recovery guarantees for the MLR problem with K 2 components. Moreover, our method has near-optimal computational complexity O(Nd) e as well as near-optimal sample complexity O(d) e for constant K. Furthermore, we show that our nonconvex formulation can be extended to solving the subspace clustering problem as well. In particular, when initialized within a small constant distance to the true subspaces, our method converges to the global optima (and recovers true subspaces) in time linear in the number of points. Furthermore, our empirical results indicate that even with random initialization, our approach converges to the global optima in linear time, providing speed-up of up to two orders of magnitude.


Provable Non-linear Inductive Matrix Completion

Neural Information Processing Systems

Consider a standard recommendation/retrieval problem where given a query, the goal is to retrieve the most relevant items. Inductive matrix completion (IMC) method is a standard approach for this problem where the given query as well as the items are embedded in a common low-dimensional space. The inner product between a query embedding and an item embedding reflects relevance of the (query, item) pair. Non-linear IMC (NIMC) uses non-linear networks to embed the query as well as items, and is known to be highly effective for a variety of tasks, such as video recommendations for users, semantic web search, etc. Despite its wide usage, existing literature lacks rigorous understanding of NIMC models.


Shallow RNN: Accurate Time-series Classification on Resource Constrained Devices

Neural Information Processing Systems

Recurrent Neural Networks (RNNs) capture long dependencies and context, and hence are the key component of typical sequential data based tasks. However, the sequential nature of RNNs dictates a large inference cost for long sequences even if the hardware supports parallelization. To induce long-term dependencies, and yet admit parallelization, we introduce novel shallow RNNs. In this architecture, the first layer splits the input sequence and runs several independent RNNs.


Efficient Algorithms for Smooth Minimax Optimization

Neural Information Processing Systems

In terms of g(, y), we consider two settings - strongly convex and nonconvex - and improve upon the best known rates in both. For strongly-convex g(, y), y, we propose a new direct optimal algorithm combining Mirror-Prox and Nesterov's AGD, and show that it can find global optimum in Õ (1/k