Goto

Collaborating Authors

 Prakash, Atul


Content-Adaptive Pixel Discretization to Improve Model Robustness

arXiv.org Artificial Intelligence

Preprocessing defenses such as pixel discretization are appealing to remove adversarial attacks due to their simplicity. However, they have been shown to be ineffective except on simple datasets like MNIST. We hypothesize that existing discretization approaches failed because using a fixed codebook for the entire dataset limits their ability to balance image representation and codeword separability. We first formally prove that adaptive codebooks can provide stronger robustness guarantees than fixed codebooks as a preprocessing defense on some datasets. Based on that insight, we propose a content-adaptive pixel discretization defense called Essential Features, which discretizes the image to a per-image adaptive codebook to reduce the color space. We then find that Essential Features can be further optimized by applying adaptive blurring before the discretization to push perturbed pixel values back to their original value before determining the codebook. Against adaptive attacks, we show that content-adaptive pixel discretization extends the range of datasets that benefit in terms of both L_2 and L_infinity robustness where previously fixed codebooks were found to have failed. Our findings suggest that content-adaptive pixel discretization should be part of the repertoire for making models robust.


Towards Robustness against Unsuspicious Adversarial Examples

arXiv.org Machine Learning

Despite the remarkable success of deep neural networks, significant concerns have emerged about their robustness to adversarial perturbations to inputs. While most attacks aim to ensure that these are imperceptible, physical perturbation attacks typically aim for being unsuspicious, even if perceptible. However, there is no universal notion of what it means for adversarial examples to be unsuspicious. We propose an approach for modeling suspiciousness by leveraging cognitive salience. Specifically, we split an image into foreground (salient region) and background (the rest), and allow significantly larger adversarial perturbations in the background. We describe how to compute the resulting dual-perturbation attacks on both deterministic and stochastic classifiers. We then experimentally demonstrate that our attacks do not significantly change perceptual salience of the background, but are highly effective against classifiers robust to conventional attacks. Furthermore, we show that adversarial training with dual-perturbation attacks yields classifiers that are more robust to these than state-of-the-art robust learning approaches, and comparable in terms of robustness to conventional attacks.


MAZE: Data-Free Model Stealing Attack Using Zeroth-Order Gradient Estimation

arXiv.org Machine Learning

Model Stealing (MS) attacks allow an adversary with black-box access to a Machine Learning model to replicate its functionality, compromising the confidentiality of the model. Such attacks train a clone model by using the predictions of the target model for different inputs. The effectiveness of such attacks relies heavily on the availability of data necessary to query the target model. Existing attacks either assume partial access to the dataset of the target model or availability of an alternate dataset with semantic similarities. This paper proposes MAZE -- a data-free model stealing attack using zeroth-order gradient estimation. In contrast to prior works, MAZE does not require any data and instead creates synthetic data using a generative model. Inspired by recent works in data-free Knowledge Distillation (KD), we train the generative model using a disagreement objective to produce inputs that maximize disagreement between the clone and the target model. However, unlike the white-box setting of KD, where the gradient information is available, training a generator for model stealing requires performing black-box optimization, as it involves accessing the target model under attack. MAZE relies on zeroth-order gradient estimation to perform this optimization and enables a highly accurate MS attack. Our evaluation with four datasets shows that MAZE provides a normalized clone accuracy in the range of 0.91x to 0.99x, and outperforms even the recent attacks that rely on partial data (JBDA, clone accuracy 0.13x to 0.69x) and surrogate data (KnockoffNets, clone accuracy 0.52x to 0.97x). We also study an extension of MAZE in the partial-data setting and develop MAZE-PD, which generates synthetic data closer to the target distribution. MAZE-PD further improves the clone accuracy (0.97x to 1.0x) and reduces the query required for the attack by 2x-24x.


Robust Classification using Robust Feature Augmentation

arXiv.org Machine Learning

Existing deep neural networks (DNNs), say for image classification, have been shown to be vulnerable to adversarial images that can cause a DNN misclassification, without any perceptible change to an image. In this work, we propose "shock-absorbing" robust features such as binarization (e.g., rounding) and group extraction (e.g., color or shape) to augment the classification pipeline, resulting in more robust classifiers. Experimentally, we show that augmenting ML models with these techniques leads to improved overall robustness on adversarial inputs as well as significant improvements in training time. On the MNIST dataset, we achieved 14x speedup in training time to obtain 90% adversarial accuracy compared to the state-of-the-art adversarial training method of Madry et al. [12], as well as retained higher adversarial accuracy over a broader range of attacks. We also find robustness improvements on traffic sign classification using robust feature augmentation. Finally, we give theoretical insights for why one can expect robust feature augmentation to reduce adversarial input space.


Analyzing the Interpretability Robustness of Self-Explaining Models

arXiv.org Artificial Intelligence

Recently, interpretable models called self-explaining models (SEMs) have been proposed with the goal of providing interpretability robustness. We evaluate the interpretability robustness of SEMs and show that explanations provided by SEMs as currently proposed are not robust to adversarial inputs. Specifically, we successfully created adversarial inputs that do not change the model outputs but cause significant changes in the explanations. We find that even though current SEMs use stable co-efficients for mapping explanations to output labels, they do not consider the robustness of the first stage of the model that creates interpretable basis concepts from the input, leading to non-robust explanations. Our work makes a case for future work to start examining how to generate interpretable basis concepts in a robust way.


Designing Adversarially Resilient Classifiers using Resilient Feature Engineering

arXiv.org Machine Learning

We provide a methodology, resilient feature engineering, for creating adversarially resilient classifiers. According to existing work, adversarial attacks identify weakly correlated or non-predictive features learned by the classifier during training and design the adversarial noise to utilize these features. Therefore, highly predictive features should be used first during classification in order to determine the set of possible output labels. Our methodology focuses the problem of designing resilient classifiers into a problem of designing resilient feature extractors for these highly predictive features. We provide two theorems, which support our methodology. The Serial Composition Resilience and Parallel Composition Resilience theorems show that the output of adversarially resilient feature extractors can be combined to create an equally resilient classifier. Based on our theoretical results, we outline the design of an adversarially resilient classifier.