Goto

Collaborating Authors

 Prabhakaran, Vinodkumar


Re-imagining Algorithmic Fairness in India and Beyond

arXiv.org Artificial Intelligence

Conventional algorithmic fairness is West-centric, as seen in its sub-groups, values, and methods. In this paper, we de-center algorithmic fairness and analyse AI power in India. Based on 36 qualitative interviews and a discourse analysis of algorithmic deployments in India, we find that several assumptions of algorithmic fairness are challenged. We find that in India, data is not always reliable due to socio-economic factors, ML makers appear to follow double standards, and AI evokes unquestioning aspiration. We contend that localising model fairness alone can be window dressing in India, where the distance between models and oppressed communities is large. Instead, we re-imagine algorithmic fairness in India and provide a roadmap to re-contextualise data and models, empower oppressed communities, and enable Fair-ML ecosystems.


Participatory Problem Formulation for Fairer Machine Learning Through Community Based System Dynamics

arXiv.org Machine Learning

Recent research on algorithmic fairness has highlighted that the problem formulation phase of ML system development can be a key source of bias that has significant downstream impacts on ML system fairness outcomes. However, very little attention has been paid to methods for improving the fairness efficacy of this critical phase of ML system development. Current practice neither accounts for the dynamic complexity of high-stakes domains nor incorporates the perspectives of vulnerable stakeholders. In this paper we introduce community based system dynamics (CBSD) as an approach to enable the participation of typically excluded stakeholders in the problem formulation phase of the ML system development process and facilitate the deep problem understanding required to mitigate bias during this crucial stage. Problem formulation is a crucial first step in any machine learning (ML) based interventions that have the potential of impacting the real lives of people; a step that involves determining the strategic goals driving the interventions and translating those strategic goals into tractable machine learning problems (Barocas et al., 2017; Passi & Barocas, 2019).


Social Biases in NLP Models as Barriers for Persons with Disabilities

arXiv.org Artificial Intelligence

Building equitable and inclusive NLP technologies demands consideration of whether and how social attitudes are represented in ML models. In particular, representations encoded in models often inadvertently perpetuate undesirable social biases from the data on which they are trained. In this paper, we present evidence of such undesirable biases towards mentions of disability in two different English language models: toxicity prediction and sentiment analysis. Next, we demonstrate that the neural embeddings that are the critical first step in most NLP pipelines similarly contain undesirable biases towards mentions of disability. We end by highlighting topical biases in the discourse about disability which may contribute to the observed model biases; for instance, gun violence, homelessness, and drug addiction are over-represented in texts discussing mental illness.


Statistical modality tagging from rule-based annotations and crowdsourcing

arXiv.org Machine Learning

We explore training an automatic modality tagger. Modality is the attitude that a speaker might have toward an event or state. One of the main hurdles for training a linguistic tagger is gathering training data. This is particularly problematic for training a tagger for modality because modality triggers are sparse for the overwhelming majority of sentences. We investigate an approach to automatically training a modality tagger where we first gathered sentences based on a high-recall simple rule-based modality tagger and then provided these sentences to Mechanical Turk annotators for further annotation. We used the resulting set of training data to train a precise modality tagger using a multi-class SVM that delivers good performance.