Post, Matt
Escaping the sentence-level paradigm in machine translation
Post, Matt, Junczys-Dowmunt, Marcin
It is well-known that document context is vital for resolving a range of translation ambiguities, and in fact the document setting is the most natural setting for nearly all translation. It is therefore unfortunate that machine translation -- both research and production -- largely remains stuck in a decades-old sentence-level translation paradigm. It is also an increasingly glaring problem in light of competitive pressure from large language models, which are natively document-based. Much work in document-context machine translation exists, but for various reasons has been unable to catch hold. This paper suggests a path out of this rut by addressing three impediments at once: what architectures should we use? where do we get document-level information for training them? and how do we know whether they are any good? In contrast to work on specialized architectures, we show that the standard Transformer architecture is sufficient, provided it has enough capacity. Next, we address the training data issue by taking document samples from back-translated data only, where the data is not only more readily available, but is also of higher quality compared to parallel document data, which may contain machine translation output. Finally, we propose generative variants of existing contrastive metrics that are better able to discriminate among document systems. Results in four large-data language pairs (DE$\rightarrow$EN, EN$\rightarrow$DE, EN$\rightarrow$FR, and EN$\rightarrow$RU) establish the success of these three pieces together in improving document-level performance.
Operationalizing Specifications, In Addition to Test Sets for Evaluating Constrained Generative Models
Raunak, Vikas, Post, Matt, Menezes, Arul
In this work, we present some recommendations on the evaluation of state-of-the-art generative models for constrained generation tasks. The progress on generative models has been rapid in recent years. These large-scale models have had three impacts: firstly, the fluency of generation in both language and vision modalities has rendered common average-case evaluation metrics much less useful in diagnosing system errors. Secondly, the same substrate models now form the basis of a number of applications, driven both by the utility of their representations as well as phenomena such as in-context learning, which raise the abstraction level of interacting with such models. Thirdly, the user expectations around these models and their feted public releases have made the technical challenge of out of domain generalization much less excusable in practice. Subsequently, our evaluation methodologies haven't adapted to these changes. More concretely, while the associated utility and methods of interacting with generative models have expanded, a similar expansion has not been observed in their evaluation practices. In this paper, we argue that the scale of generative models could be exploited to raise the abstraction level at which evaluation itself is conducted and provide recommendations for the same. Our recommendations are based on leveraging specifications as a powerful instrument to evaluate generation quality and are readily applicable to a variety of tasks.
Membership Inference Attacks on Sequence-to-Sequence Models
Hisamoto, Sorami, Post, Matt, Duh, Kevin
Data privacy is an important issue for "machine learning as a service" providers. We focus on the problem of membership inference attacks: given a data sample and black-box access to a model's API, determine whether the sample existed in the model's training data. Our contribution is an investigation of this problem in the context of sequence-to-sequence models, which are important in applications such as machine translation and video captioning. We define the membership inference problem for sequence generation, provide an open dataset based on state-of-the-art machine translation models, and report initial results on whether these models leak private information against several kinds of membership inference attacks.
Sockeye: A Toolkit for Neural Machine Translation
Hieber, Felix, Domhan, Tobias, Denkowski, Michael, Vilar, David, Sokolov, Artem, Clifton, Ann, Post, Matt
We describe Sockeye (version 1.12), an open-source sequence-to-sequence toolkit for Neural Machine Translation (NMT). Sockeye is a production-ready framework for training and applying models as well as an experimental platform for researchers. Written in Python and built on MXNet, the toolkit offers scalable training and inference for the three most prominent encoder-decoder architectures: attentional recurrent neural networks, self-attentional transformers, and fully convolutional networks. Sockeye also supports a wide range of optimizers, normalization and regularization techniques, and inference improvements from current NMT literature. Users can easily run standard training recipes, explore different model settings, and incorporate new ideas. In this paper, we highlight Sockeye's features and benchmark it against other NMT toolkits on two language arcs from the 2017 Conference on Machine Translation (WMT): English-German and Latvian-English. We report competitive BLEU scores across all three architectures, including an overall best score for Sockeye's transformer implementation. To facilitate further comparison, we release all system outputs and training scripts used in our experiments. The Sockeye toolkit is free software released under the Apache 2.0 license.
Robsut Wrod Reocginiton via Semi-Character Recurrent Neural Network
Sakaguchi, Keisuke (Johns Hopkins University) | Duh, Kevin (Johns Hopkins University) | Post, Matt (Johns Hopkins University) | Durme, Benjamin Van (Johns Hopkins University)
Language processing mechanism by humans is generally more robust than computers. The Cmabrigde Uinervtisy (Cambridge University) effect from the psycholinguistics literature has demonstrated such a robust word processing mechanism, where jumbled words (e.g. Cmabrigde / Cambridge) are recognized with little cost. On the other hand, computational models for word recognition (e.g. spelling checkers) perform poorly on data with such noise. Inspired by the findings from the Cmabrigde Uinervtisy effect, we propose a word recognition model based on a semi-character level recurrent neural network (scRNN). In our experiments, we demonstrate that scRNN has significantly more robust performance in word spelling correction (i.e. word recognition) compared to existing spelling checkers and character-based convolutional neural network. Furthermore, we demonstrate that the model is cognitively plausible by replicating a psycholinguistics experiment about human reading difficulty using our model.