Not enough data to create a plot.
Try a different view from the menu above.
Popa, Alin-Ionut
Bidirectional Long-Range Parser for Sequential Data Understanding
Leotescu, George, Voinea, Daniel, Popa, Alin-Ionut
The transformer is a powerful data modelling framework responsible for remarkable performance on a wide range of tasks. However, they are limited in terms of scalability as it is suboptimal and inefficient to process long-sequence data. To this purpose we introduce BLRP (Bidirectional Long-Range Parser), a novel and versatile attention mechanism designed to increase performance and efficiency on long-sequence tasks. It leverages short and long range heuristics in the form of a local sliding window approach combined with a global bidirectional latent space synthesis technique. We show the benefits and versatility of our approach on vision and language domains by demonstrating competitive results against state-of-the-art methods on the Long-Range-Arena and CIFAR benchmarks together with ablations demonstrating the computational efficiency.
Deep Network for the Integrated 3D Sensing of Multiple People in Natural Images
Zanfir, Andrei, Marinoiu, Elisabeta, Zanfir, Mihai, Popa, Alin-Ionut, Sminchisescu, Cristian
We present MubyNet -- a feed-forward, multitask, bottom up system for the integrated localization, as well as 3d pose and shape estimation, of multiple people in monocular images. The challenge is the formal modeling of the problem that intrinsically requires discrete and continuous computation, e.g. grouping people vs. predicting 3d pose. The model identifies human body structures (joints and limbs) in images, groups them based on 2d and 3d information fused using learned scoring functions, and optimally aggregates such responses into partial or complete 3d human skeleton hypotheses under kinematic tree constraints, but without knowing in advance the number of people in the scene and their visibility relations. We design a multi-task deep neural network with differentiable stages where the person grouping problem is formulated as an integer program based on learned body part scores parameterized by both 2d and 3d information. This avoids suboptimality resulting from separate 2d and 3d reasoning, with grouping performed based on the combined representation. The final stage of 3d pose and shape prediction is based on a learned attention process where information from different human body parts is optimally integrated. State-of-the-art results are obtained in large scale datasets like Human3.6M and Panoptic, and qualitatively by reconstructing the 3d shape and pose of multiple people, under occlusion, in difficult monocular images.
Deep Network for the Integrated 3D Sensing of Multiple People in Natural Images
Zanfir, Andrei, Marinoiu, Elisabeta, Zanfir, Mihai, Popa, Alin-Ionut, Sminchisescu, Cristian
We present MubyNet -- a feed-forward, multitask, bottom up system for the integrated localization, as well as 3d pose and shape estimation, of multiple people in monocular images. The challenge is the formal modeling of the problem that intrinsically requires discrete and continuous computation, e.g. grouping people vs. predicting 3d pose. The model identifies human body structures (joints and limbs) in images, groups them based on 2d and 3d information fused using learned scoring functions, and optimally aggregates such responses into partial or complete 3d human skeleton hypotheses under kinematic tree constraints, but without knowing in advance the number of people in the scene and their visibility relations. We design a multi-task deep neural network with differentiable stages where the person grouping problem is formulated as an integer program based on learned body part scores parameterized by both 2d and 3d information. This avoids suboptimality resulting from separate 2d and 3d reasoning, with grouping performed based on the combined representation. The final stage of 3d pose and shape prediction is based on a learned attention process where information from different human body parts is optimally integrated. State-of-the-art results are obtained in large scale datasets like Human3.6M and Panoptic, and qualitatively by reconstructing the 3d shape and pose of multiple people, under occlusion, in difficult monocular images.