Poovendran, Radha
Shaping Advice in Deep Multi-Agent Reinforcement Learning
Xiao, Baicen, Ramasubramanian, Bhaskar, Poovendran, Radha
Multi-agent reinforcement learning involves multiple agents interacting with each other and a shared environment to complete tasks. When rewards provided by the environment are sparse, agents may not receive immediate feedback on the quality of actions that they take, thereby affecting learning of policies. In this paper, we propose a method called Shaping Advice in deep Multi-agent reinforcement learning (SAM) to augment the reward signal from the environment with an additional reward termed shaping advice. The shaping advice is given by a difference of potential functions at consecutive time-steps. Each potential function is a function of observations and actions of the agents. The shaping advice needs to be specified only once at the start of training, and can be easily provided by non-experts. We show through theoretical analyses and experimental validation that shaping advice provided by SAM does not distract agents from completing tasks specified by the environment reward. Theoretically, we prove that convergence of policy gradients and value functions when using SAM implies convergence of these quantities in the absence of SAM. Experimentally, we evaluate SAM on three tasks in the multi-agent Particle World environment that have sparse rewards. We observe that using SAM results in agents learning policies to complete tasks faster, and obtain higher rewards than: i) using sparse rewards alone; ii) a state-of-the-art reward redistribution method.
Reinforcement Learning Beyond Expectation
Ramasubramanian, Bhaskar, Niu, Luyao, Clark, Andrew, Poovendran, Radha
The inputs and preferences of human users are important considerations in situations where these users interact with autonomous cyber or cyber-physical systems. In these scenarios, one is often interested in aligning behaviors of the system with the preferences of one or more human users. Cumulative prospect theory (CPT) is a paradigm that has been empirically shown to model a tendency of humans to view gains and losses differently. In this paper, we consider a setting where an autonomous agent has to learn behaviors in an unknown environment. In traditional reinforcement learning, these behaviors are learned through repeated interactions with the environment by optimizing an expected utility. In order to endow the agent with the ability to closely mimic the behavior of human users, we optimize a CPT-based cost. We introduce the notion of the CPT-value of an action taken in a state, and establish the convergence of an iterative dynamic programming-based approach to estimate this quantity. We develop two algorithms to enable agents to learn policies to optimize the CPT-vale, and evaluate these algorithms in environments where a target state has to be reached while avoiding obstacles. We demonstrate that behaviors of the agent learned using these algorithms are better aligned with that of a human user who might be placed in the same environment, and is significantly improved over a baseline that optimizes an expected utility.
Are Odds Really Odd? Bypassing Statistical Detection of Adversarial Examples
Hosseini, Hossein, Kannan, Sreeram, Poovendran, Radha
Deep learning classifiers are known to be vulnerable to adversarial examples. A recent paper presented at ICML 2019 proposed a statistical test detection method based on the observation that logits of noisy adversarial examples are biased toward the true class. The method is evaluated on CIFAR-10 dataset and is shown to achieve 99% true positive rate (TPR) at only 1% false positive rate (FPR). In this paper, we first develop a classifier-based adaptation of the statistical test method and show that it improves the detection performance. We then propose Logit Mimicry Attack method to generate adversarial examples such that their logits mimic those of benign images. We show that our attack bypasses both statistical test and classifier-based methods, reducing their TPR to less than 2:2% and 1:6%, respectively, even at 5% FPR. We finally show that a classifier-based detector that is trained with logits of mimicry adversarial examples can be evaded by an adaptive attacker that specifically targets the detector. Furthermore, even a detector that is iteratively trained to defend against adaptive attacker cannot be made robust, indicating that statistics of logits cannot be used to detect adversarial examples.
Potential-Based Advice for Stochastic Policy Learning
Xiao, Baicen, Ramasubramanian, Bhaskar, Clark, Andrew, Hajishirzi, Hannaneh, Bushnell, Linda, Poovendran, Radha
This paper augments the reward received by a reinforcement learning agent with potential functions in order to help the agent learn (possibly stochastic) optimal policies. We show that a potential-based reward shaping scheme is able to preserve optimality of stochastic policies, and demonstrate that the ability of an agent to learn an optimal policy is not affected when this scheme is augmented to soft Q-learning. We propose a method to impart potential based advice schemes to policy gradient algorithms. An algorithm that considers an advantage actor-critic architecture augmented with this scheme is proposed, and we give guarantees on its convergence. Finally, we evaluate our approach on a puddle-jump grid world with indistinguishable states, and the continuous state and action mountain car environment from classical control. Our results indicate that these schemes allow the agent to learn a stochastic optimal policy faster and obtain a higher average reward.
Dropping Pixels for Adversarial Robustness
Hosseini, Hossein, Kannan, Sreeram, Poovendran, Radha
Deep neural networks are vulnerable against adversarial examples. In this paper, we propose to train and test the networks with randomly subsampled images with high drop rates. We show that this approach significantly improves robustness against adversarial examples in all cases of bounded L0, L2 and L_inf perturbations, while reducing the standard accuracy by a small value. We argue that subsampling pixels can be thought to provide a set of robust features for the input image and, thus, improves robustness without performing adversarial training.
On the Limitation of Convolutional Neural Networks in Recognizing Negative Images
Hosseini, Hossein, Xiao, Baicen, Jaiswal, Mayoore, Poovendran, Radha
Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance on a variety of computer vision tasks, particularly visual classification problems, where new algorithms reported to achieve or even surpass the human performance. In this paper, we examine whether CNNs are capable of learning the semantics of training data. To this end, we evaluate CNNs on negative images, since they share the same structure and semantics as regular images and humans can classify them correctly. Our experimental results indicate that when training on regular images and testing on negative images, the model accuracy is significantly lower than when it is tested on regular images. This leads us to the conjecture that current training methods do not effectively train models to generalize the concepts. We then introduce the notion of semantic adversarial examples - transformed inputs that semantically represent the same objects, but the model does not classify them correctly - and present negative images as one class of such inputs.
Learning Temporal Dependence from Time-Series Data with Latent Variables
Hosseini, Hossein, Kannan, Sreeram, Zhang, Baosen, Poovendran, Radha
We consider the setting where a collection of time series, modeled as random processes, evolve in a causal manner, and one is interested in learning the graph governing the relationships of these processes. A special case of wide interest and applicability is the setting where the noise is Gaussian and relationships are Markov and linear. We study this setting with two additional features: firstly, each random process has a hidden (latent) state, which we use to model the internal memory possessed by the variables (similar to hidden Markov models). Secondly, each variable can depend on its latent memory state through a random lag (rather than a fixed lag), thus modeling memory recall with differing lags at distinct times. Under this setting, we develop an estimator and prove that under a genericity assumption, the parameters of the model can be learned consistently. We also propose a practical adaption of this estimator, which demonstrates significant performance gains in both synthetic and real-world datasets.