Plotting

 Poolla, Kameshwar


Are Ensemble Classifiers Powerful Enough for the Detection and Diagnosis of Intermediate-Severity Faults?

arXiv.org Machine Learning

Intermediate-Severity (IS) faults present milder symptoms compared to severe faults, and are more difficult to detect and diagnose due to their close resemblance to normal operating conditions. The lack of IS fault examples in the training data can pose severe risks to Fault Detection and Diagnosis (FDD) methods that are built upon Machine Learning (ML) techniques, because these faults can be easily mistaken as normal operating conditions. Ensemble models are widely applied in ML and are considered promising methods for detecting out-of-distribution (OOD) data. We identify common pitfalls in these models through extensive experiments with several popular ensemble models on two real-world datasets. Then, we discuss how to design more effective ensemble models for detecting and diagnosing IS faults.


A Queuing Approach to Parking: Modeling, Verification, and Prediction

arXiv.org Machine Learning

We present a queuing model of parking dynamics and a model-based prediction method to provide real-time probabilistic forecasts of future parking occupancy. The queuing model has a non-homogeneous arrival rate and time-varying service time distribution. All statistical assumptions of the model are verified using data from 29 truck parking locations, each with between 55 and 299 parking spots. For each location and each spot the data specifies the arrival and departure times of a truck, for 16 months of operation. The modeling framework presented in this paper provides empirical support for queuing models adopted in many theoretical studies and policy designs. We discuss how our framework can be used to study parking problems in different environments. Based on the queuing model, we propose two prediction methods, a microscopic method and a macroscopic method, that provide a real-time probabilistic forecast of parking occupancy for an arbitrary forecast horizon. These model-based methods convert a probabilistic forecast problem into a parameter estimation problem that can be tackled using classical estimation methods such as regressions or pure machine learning algorithms. We characterize a lower bound for an arbitrary real-time prediction algorithm. We evaluate the performance of these methods using the truck data comparing the outcomes of their implementations with other model-based and model-free methods proposed in the literature.


A One-Class Support Vector Machine Calibration Method for Time Series Change Point Detection

arXiv.org Machine Learning

It is important to identify the change point of a system's health status, which usually signifies an incipient fault under development. The One-Class Support Vector Machine (OC-SVM) is a popular machine learning model for anomaly detection and hence could be used for identifying change points; however, it is sometimes difficult to obtain a good OC-SVM model that can be used on sensor measurement time series to identify the change points in system health status. In this paper, we propose a novel approach for calibrating OC-SVM models. The approach uses a heuristic search method to find a good set of input data and hyperparameters that yield a well-performing model. Our results on the C-MAPSS dataset demonstrate that OC-SVM can also achieve satisfactory accuracy in detecting change point in time series with fewer training data, compared to state-of-the-art deep learning approaches. In our case study, the OC-SVM calibrated by the proposed model is shown to be useful especially in scenarios with limited amount of training data.


Detecting and Diagnosing Incipient Building Faults Using Uncertainty Information from Deep Neural Networks

arXiv.org Machine Learning

Abstract--Early detection of incipient faults is of vital importance toreducing maintenance costs, saving energy, and enhancing occupant comfort in buildings. Popular supervised learning models such as deep neural networks are considered promising due to their ability to directly learn from labeled fault data; however, it is known that the performance of supervised learning approaches highly relies on the availability and quality of labeled training data. In Fault Detection and Diagnosis (FDD) applications, the lack of labeled incipient fault data has posed a major challenge to applying these supervised learning techniques to commercial buildings. To overcome this challenge, this paper proposes using Monte Carlo dropout (MCdropout) to enhance the supervised learning pipeline, so that the resulting neural network is able to detect and diagnose unseen incipient fault examples. We also examine the proposed MCdropout method on the RP-1043 dataset to demonstrate its effectiveness in indicating the most likely incipient fault types. I. INTRODUCTION Building faults whose impact are less perceivable and/or hinder regular operations are called soft faults [21], [32]. These soft faults, especially in their incipient phase, are hard to detect as their signatures are not generally obvious (due to their magnitudes) and are lurking under measurement/system noise or feedback control actions [10], [27]. Nevertheless, they will impact energy consumption, system performance, and maintenance costs adversely in the long-run if left undetected and unattended [14].


Low-dimensional Models in Spatio-Temporal Wind Speed Forecasting

arXiv.org Machine Learning

Integrating wind power into the grid is challenging because of its random nature. Integration is facilitated with accurate short-term forecasts of wind power. The paper presents a spatio-temporal wind speed forecasting algorithm that incorporates the time series data of a target station and data of surrounding stations. Inspired by Compressive Sensing (CS) and structured-sparse recovery algorithms, we claim that there usually exists an intrinsic low-dimensional structure governing a large collection of stations that should be exploited. We cast the forecasting problem as recovery of a block-sparse signal $\boldsymbol{x}$ from a set of linear equations $\boldsymbol{b} = A\boldsymbol{x}$ for which we propose novel structure-sparse recovery algorithms. Results of a case study in the east coast show that the proposed Compressive Spatio-Temporal Wind Speed Forecasting (CST-WSF) algorithm significantly improves the short-term forecasts compared to a set of widely-used benchmark models.