Plotting

 Poloczek, Matthias


Bayesian Optimization with Gradients

arXiv.org Artificial Intelligence

Bayesian optimization has been successful at global optimization of expensive-to-evaluate multimodal objective functions. However, unlike most optimization methods, Bayesian optimization typically does not use derivative information. In this paper we show how Bayesian optimization can exploit derivative information to decrease the number of objective function evaluations required for good performance. In particular, we develop a novel Bayesian optimization algorithm, the derivative-enabled knowledge-gradient (dKG), for which we show one-step Bayes-optimality, asymptotic consistency, and greater one-step value of information than is possible in the derivative-free setting. Our procedure accommodates noisy and incomplete derivative information, comes in both sequential and batch forms, and can optionally reduce the computational cost of inference through automatically selected retention of a single directional derivative. We also compute the d-KG acquisition function and its gradient using a novel fast discretization-free technique. We show d-KG provides state-of-the-art performance compared to a wide range of optimization procedures with and without gradients, on benchmarks including logistic regression, deep learning, kernel learning, and k-nearest neighbors.


Bayesian Optimization with Gradients

Neural Information Processing Systems

Bayesian optimization has shown success in global optimization of expensive-to-evaluate multimodal objective functions. However, unlike most optimization methods, Bayesian optimization typically does not use derivative information. In this paper we show how Bayesian optimization can exploit derivative information to find good solutions with fewer objective function evaluations. In particular, we develop a novel Bayesian optimization algorithm, the derivative-enabled knowledge-gradient (dKG), which is one-step Bayes-optimal, asymptotically consistent, and provides greater one-step value of information than in the derivative-free setting. dKG accommodates noisy and incomplete derivative information, comes in both sequential and batch forms, and can optionally reduce the computational cost of inference through automatically selected retention of a single directional derivative. We also compute the dKG acquisition function and its gradient using a novel fast discretization-free technique. We show dKG provides state-of-the-art performance compared to a wide range of optimization procedures with and without gradients, on benchmarks including logistic regression, deep learning, kernel learning, and k-nearest neighbors.


Multi-Information Source Optimization

Neural Information Processing Systems

We consider Bayesian methods for multi-information source optimization (MISO), in which we seek to optimize an expensive-to-evaluate black-box objective function while also accessing cheaper but biased and noisy approximations ("information sources"). We present a novel algorithm that outperforms the state of the art for this problem by using a Gaussian process covariance kernel better suited to MISO than those used by previous approaches, and an acquisition function based on a one-step optimality analysis supported by efficient parallelization. We also provide a novel technique to guarantee the asymptotic quality of the solution provided by this algorithm. Experimental evaluations demonstrate that this algorithm consistently finds designs of higher value at less cost than previous approaches.


Multi-Information Source Optimization

arXiv.org Machine Learning

We consider Bayesian optimization of an expensive-to-evaluate black-box objective function, where we also have access to cheaper approximations of the objective. In general, such approximations arise in applications such as reinforcement learning, engineering, and the natural sciences, and are subject to an inherent, unknown bias. This model discrepancy is caused by an inadequate internal model that deviates from reality and can vary over the domain, making the utilization of these approximations a non-trivial task. We present a novel algorithm that provides a rigorous mathematical treatment of the uncertainties arising from model discrepancies and noisy observations. Its optimization decisions rely on a value of information analysis that extends the Knowledge Gradient factor to the setting of multiple information sources that vary in cost: each sampling decision maximizes the predicted benefit per unit cost. We conduct an experimental evaluation that demonstrates that the method consistently outperforms other state-of-the-art techniques: it finds designs of considerably higher objective value and additionally inflicts less cost in the exploration process.


Warm Starting Bayesian Optimization

arXiv.org Machine Learning

We develop a framework for warm-starting Bayesian optimization, that reduces the solution time required to solve an optimization problem that is one in a sequence of related problems. This is useful when optimizing the output of a stochastic simulator that fails to provide derivative information, for which Bayesian optimization methods are well-suited. Solving sequences of related optimization problems arises when making several business decisions using one optimization model and input data collected over different time periods or markets. While many gradient-based methods can be warm started by initiating optimization at the solution to the previous problem, this warm start approach does not apply to Bayesian optimization methods, which carry a full metamodel of the objective function from iteration to iteration. Our approach builds a joint statistical model of the entire collection of related objective functions, and uses a value of information calculation to recommend points to evaluate.