Plotting

 Pollack, Jordan B.


Why did TD-Gammon Work?

Neural Information Processing Systems

Although TD-Gammon is one of the major successes in machine learning, it has not led to similar impressive breakthroughs in temporal difference We werelearning for other applications or even other games. Instead we apply simple hill-climbing in a relative fitness environment. These results and further analysis suggest of Tesauro's program had more to do with thethat the surprising success of the learning task and the dynamics of theco-evolutionary structure backgammon game itself. 1 INTRODUCTION It took great chutzpah for Gerald Tesauro to start wasting computer cycles on temporal of Backgammon (Tesauro, 1992). After all, the dream ofprogram play itself in the hopes computers mastering a domain by self-play or "introspection" had been around since the early days of AI, forming part of Samuel's checker player (Samuel, 1959) and used in Donald Michie's MENACE tictac-toe learner (Michie, 1961). However such self-conditioning or nonexistent internal representations, had generally beensystems, with weak of scale and abandoned by the field of AI.


Why did TD-Gammon Work?

Neural Information Processing Systems

Although TD-Gammon is one of the major successes in machine learning, it has not led to similar impressive breakthroughs in temporal difference learning for other applications or even other games. We were able to replicate some of the success of TD-Gammon, developing a competitive evaluation function on a 4000 parameter feed-forward neural network, without using back-propagation, reinforcement or temporal difference learning methods. Instead we apply simple hill-climbing in a relative fitness environment. These results and further analysis suggest that the surprising success of Tesauro's program had more to do with the co-evolutionary structure of the learning task and the dynamics of the backgammon game itself. 1 INTRODUCTION It took great chutzpah for Gerald Tesauro to start wasting computer cycles on temporal difference learning in the game of Backgammon (Tesauro, 1992). After all, the dream of computers mastering a domain by self-play or "introspection" had been around since the early days of AI, forming part of Samuel's checker player (Samuel, 1959) and used in Donald Michie's MENACE tictac-toe learner (Michie, 1961).


Structural and Behavioral Evolution of Recurrent Networks

Neural Information Processing Systems

This paper introduces GNARL, an evolutionary program which induces recurrent neural networks that are structurally unconstrained. In contrast to constructive and destructive algorithms, GNARL employs a population of networks and uses a fitness function's unsupervised feedback to guide search through network space. Annealing is used in generating both gaussian weight changes and structural modifications. Applying GNARL to a complex search and collection task demonstrates that the system is capable of inducing networks with complex internal dynamics.


Structural and Behavioral Evolution of Recurrent Networks

Neural Information Processing Systems

This paper introduces GNARL, an evolutionary program which induces recurrent neural networks that are structurally unconstrained. In contrast to constructive and destructive algorithms, GNARL employs a population ofnetworks and uses a fitness function's unsupervised feedback to guide search through network space. Annealing is used in generating both gaussian weight changes and structural modifications. Applying GNARL to a complex search and collection task demonstrates that the system is capable of inducing networks with complex internal dynamics.


Structural and Behavioral Evolution of Recurrent Networks

Neural Information Processing Systems

This paper introduces GNARL, an evolutionary program which induces recurrent neural networks that are structurally unconstrained. In contrast to constructive and destructive algorithms, GNARL employs a population of networks and uses a fitness function's unsupervised feedback to guide search through network space. Annealing is used in generating both gaussian weight changes and structural modifications. Applying GNARL to a complex search and collection task demonstrates that the system is capable of inducing networks with complex internal dynamics.


Language Induction by Phase Transition in Dynamical Recognizers

Neural Information Processing Systems

A higher order recurrent neural network architecture learns to recognize and generate languages after being "trained" on categorized exemplars. Studying these networks from the perspective of dynamical systems yields two interesting discoveries: First, a longitudinal examination of the learning process illustrates a new form of mechanical inference: Induction by phase transition. A small weight adjustment causes a "bifurcation" in the limit behavior of the network.


Back Propagation is Sensitive to Initial Conditions

Neural Information Processing Systems

This paper explores the effect of initial weight selection on feed-forward networks learning simple functions with the back-propagation technique.


Back Propagation is Sensitive to Initial Conditions

Neural Information Processing Systems

This paper explores the effect of initial weight selection on feed-forward networks learning simple functions with the back-propagation technique.


Language Induction by Phase Transition in Dynamical Recognizers

Neural Information Processing Systems

A higher order recurrent neural network architecture learns to recognize and generate languages after being "trained" on categorized exemplars. Studying these networks from the perspective of dynamical systems yields two interesting discoveries: First, a longitudinal examination of the learning process illustrates a new form of mechanical inference: Induction by phase transition. A small weight adjustment causes a "bifurcation" in the limit behavior of the network.


Implications of Recursive Distributed Representations

Neural Information Processing Systems

I will describe my recent results on the automatic development of fixedwidth recursivedistributed representations of variable-sized hierarchal data structures. One implication of this wolk is that certain types of AIstyle data-structures can now be represented in fixed-width analog vectors. Simple inferences can be perfonned using the type of pattern associations that neural networks excel at Another implication arises from noting that these representations become self-similar in the limit Once this door to chaos is opened.