Plotting

 Plessis, Marthinus C. du


Positive-Unlabeled Learning with Non-Negative Risk Estimator

Neural Information Processing Systems

From only positive (P) and unlabeled (U) data, a binary classifier could be trained with PU learning, in which the state of the art is unbiased PU learning. However, if its model is very flexible, empirical risks on training data will go negative, and we will suffer from serious overfitting. In this paper, we propose a non-negative risk estimator for PU learning: when getting minimized, it is more robust against overfitting, and thus we are able to use very flexible models (such as deep neural networks) given limited P data. Moreover, we analyze the bias, consistency, and mean-squared-error reduction of the proposed risk estimator, and bound the estimation error of the resulting empirical risk minimizer. Experiments demonstrate that our risk estimator fixes the overfitting problem of its unbiased counterparts.


Analysis of Learning from Positive and Unlabeled Data

Neural Information Processing Systems

Learning a classifier from positive and unlabeled data is an important class of classification problems that are conceivable in many practical applications. In this paper, we first show that this problem can be solved by cost-sensitive learning between positive and unlabeled data. We then show that convex surrogate loss functions such as the hinge loss may lead to a wrong classification boundary due to an intrinsic bias, but the problem can be avoided by using non-convex loss functions such as the ramp loss. We next analyze the excess risk when the class prior is estimated from data, and show that the classification accuracy is not sensitive to class prior estimation if the unlabeled data is dominated by the positive data (this is naturally satisfied in inlier-based outlier detection because inliers are dominant in the unlabeled dataset). Finally, we provide generalization error bounds and show that, for an equal number of labeled and unlabeled samples, the generalization error of learning only from positive and unlabeled samples is no worse than $2\sqrt{2}$ times the fully supervised case.


Positive-Unlabeled Learning with Non-Negative Risk Estimator

Neural Information Processing Systems

From only positive (P) and unlabeled (U) data, a binary classifier could be trained with PU learning, in which the state of the art is unbiased PU learning. However, if its model is very flexible, empirical risks on training data will go negative, and we will suffer from serious overfitting. In this paper, we propose a non-negative risk estimator for PU learning: when getting minimized, it is more robust against overfitting, and thus we are able to use very flexible models (such as deep neural networks) given limited P data. Moreover, we analyze the bias, consistency, and mean-squared-error reduction of the proposed risk estimator, and bound the estimation error of the resulting empirical risk minimizer. Experiments demonstrate that our risk estimator fixes the overfitting problem of its unbiased counterparts.


Positive-Unlabeled Learning with Non-Negative Risk Estimator

arXiv.org Machine Learning

From only positive (P) and unlabeled (U) data, a binary classifier could be trained with PU learning, in which the state of the art is unbiased PU learning. However, if its model is very flexible, empirical risks on training data will go negative, and we will suffer from serious overfitting. In this paper, we propose a non-negative risk estimator for PU learning: when getting minimized, it is more robust against overfitting, and thus we are able to use very flexible models (such as deep neural networks) given limited P data. Moreover, we analyze the bias, consistency, and mean-squared-error reduction of the proposed risk estimator, and bound the estimation error of the resulting empirical risk minimizer. Experiments demonstrate that our risk estimator fixes the overfitting problem of its unbiased counterparts.


Class-prior Estimation for Learning from Positive and Unlabeled Data

arXiv.org Machine Learning

We consider the problem of estimating the class prior in an unlabeled dataset. Under the assumption that an additional labeled dataset is available, the class prior can be estimated by fitting a mixture of class-wise data distributions to the unlabeled data distribution. However, in practice, such an additional labeled dataset is often not available. In this paper, we show that, with additional samples coming only from the positive class, the class prior of the unlabeled dataset can be estimated correctly. Our key idea is to use properly penalized divergences for model fitting to cancel the error caused by the absence of negative samples. We further show that the use of the penalized $L_1$-distance gives a computationally efficient algorithm with an analytic solution. The consistency, stability, and estimation error are theoretically analyzed. Finally, we experimentally demonstrate the usefulness of the proposed method.


Analysis of Learning from Positive and Unlabeled Data

Neural Information Processing Systems

Learning a classifier from positive and unlabeled data is an important class of classification problems that are conceivable in many practical applications. In this paper, we first show that this problem can be solved by cost-sensitive learning between positive and unlabeled data. We then show that convex surrogate loss functions such as the hinge loss may lead to a wrong classification boundary due to an intrinsic bias, but the problem can be avoided by using non-convex loss functions such as the ramp loss. We next analyze the excess risk when the class prior is estimated from data, and show that the classification accuracy is not sensitive to class prior estimation if the unlabeled data is dominated by the positive data (this is naturally satisfied in inlier-based outlier detection because inliers are dominant in the unlabeled dataset). Finally, we provide generalization error bounds and show that, for an equal number of labeled and unlabeled samples, the generalization error of learning only from positive and unlabeled samples is no worse than $2\sqrt{2}$ times the fully supervised case. These theoretical findings are also validated through experiments.