Pilanci, Mert
Newton Sketch: A Linear-time Optimization Algorithm with Linear-Quadratic Convergence
Pilanci, Mert, Wainwright, Martin J.
We propose a randomized second-order method for optimization known as the Newton Sketch: it is based on performing an approximate Newton step using a randomly projected or sub-sampled Hessian. For self-concordant functions, we prove that the algorithm has super-linear convergence with exponentially high probability, with convergence and complexity guarantees that are independent of condition numbers and related problem-dependent quantities. Given a suitable initialization, similar guarantees also hold for strongly convex and smooth objectives without self-concordance. When implemented using randomized projections based on a sub-sampled Hadamard basis, the algorithm typically has substantially lower complexity than Newton's method. We also describe extensions of our methods to programs involving convex constraints that are equipped with self-concordant barriers. We discuss and illustrate applications to linear programs, quadratic programs with convex constraints, logistic regression and other generalized linear models, as well as semidefinite programs.
Randomized sketches for kernels: Fast and optimal non-parametric regression
Yang, Yun, Pilanci, Mert, Wainwright, Martin J.
Kernel ridge regression (KRR) is a standard method for performing non-parametric regression over reproducing kernel Hilbert spaces. Given $n$ samples, the time and space complexity of computing the KRR estimate scale as $\mathcal{O}(n^3)$ and $\mathcal{O}(n^2)$ respectively, and so is prohibitive in many cases. We propose approximations of KRR based on $m$-dimensional randomized sketches of the kernel matrix, and study how small the projection dimension $m$ can be chosen while still preserving minimax optimality of the approximate KRR estimate. For various classes of randomized sketches, including those based on Gaussian and randomized Hadamard matrices, we prove that it suffices to choose the sketch dimension $m$ proportional to the statistical dimension (modulo logarithmic factors). Thus, we obtain fast and minimax optimal approximations to the KRR estimate for non-parametric regression.
Randomized Sketches of Convex Programs with Sharp Guarantees
Pilanci, Mert, Wainwright, Martin J.
Random projection (RP) is a classical technique for reducing storage and computational costs. We analyze RP-based approximations of convex programs, in which the original optimization problem is approximated by the solution of a lower-dimensional problem. Such dimensionality reduction is essential in computation-limited settings, since the complexity of general convex programming can be quite high (e.g., cubic for quadratic programs, and substantially higher for semidefinite programs). In addition to computational savings, random projection is also useful for reducing memory usage, and has useful properties for privacy-sensitive optimization. We prove that the approximation ratio of this procedure can be bounded in terms of the geometry of constraint set. For a broad class of random projections, including those based on various sub-Gaussian distributions as well as randomized Hadamard and Fourier transforms, the data matrix defining the cost function can be projected down to the statistical dimension of the tangent cone of the constraints at the original solution, which is often substantially smaller than the original dimension. We illustrate consequences of our theory for various cases, including unconstrained and $\ell_1$-constrained least squares, support vector machines, low-rank matrix estimation, and discuss implications on privacy-sensitive optimization and some connections with de-noising and compressed sensing.
Recovery of Sparse Probability Measures via Convex Programming
Pilanci, Mert, Ghaoui, Laurent E., Chandrasekaran, Venkat
We consider the problem of cardinality penalized optimization of a convex function over the probability simplex with additional convex constraints. It's well-known that the classical L1 regularizer fails to promote sparsity on the probability simplex since L1 norm on the probability simplex is trivially constant. We propose a direct relaxation of the minimum cardinality problem and show that it can be efficiently solved using convex programming. As a first application we consider recovering a sparse probability measure given moment constraints, in which our formulation becomes linear programming, hence can be solved very efficiently. A sufficient condition for exact recovery of the minimum cardinality solution is derived for arbitrary affine constraints. We then develop a penalized version for the noisy setting which can be solved using second order cone programs. The proposed method outperforms known heuristics based on L1 norm. As a second application we consider convex clustering using a sparse Gaussian mixture and compare our results with the well known soft k-means algorithm.