Goto

Collaborating Authors

 Pezeshkpour, Pouya


Measuring and Modifying Factual Knowledge in Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) store an extensive amount of factual knowledge obtained from vast collections of text. To effectively utilize these models for downstream tasks, it is crucial to have reliable methods for measuring their knowledge. However, existing approaches for knowledge measurement have certain limitations, and despite recent efforts, they fail to provide accurate measurements and the necessary insights for modifying the knowledge within LLMs. In this work, we employ information theory-based measurements to provide a framework estimating the factual knowledge contained within large language models. More specifically, we measure knowledge by analyzing the LLM's prediction probability distribution before and after instilling the target knowledge, employing metrics such as entropy and KL-divergence. Introducing our metrics, we first assess their accuracy in comparison to previous ranking-based methods, surpassing them by over $35\%$ in a synthetic experiment. Then, we explore two prominent methods of knowledge instillation, discovering that LLMs exhibit limitations in capturing new knowledge under specific circumstances for one of these methods. Lastly, we demonstrate the applicability of our methods in extracting unlearned and mislearned facts in LLMs through their application to in-context learning. We make code and data for all methods and experiments in this paper publicly available.


ParsiNLU: A Suite of Language Understanding Challenges for Persian

arXiv.org Artificial Intelligence

Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this rich language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of high-level tasks -- Reading Comprehension, Textual Entailment, etc. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5$k$ new instances across 6 distinct NLU tasks. Besides, we present the first results on state-of-the-art monolingual and multi-lingual pre-trained language-models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.


Generating User-friendly Explanations for Loan Denials using GANs

arXiv.org Machine Learning

Financial decisions impact our lives, and thus everyone from the regulator to the consumer is interested in fair, sound, and explainable decisions. There is increasing competitive desire and regulatory incentive to deploy AI mindfully within financial services. An important mechanism towards that end is to explain AI decisions to various stakeholders. State-of-the-art explainable AI systems mostly serve AI engineers and offer little to no value to business decision makers, customers, and other stakeholders. Towards addressing this gap, in this work we consider the scenario of explaining loan denials. We build the first-of-its-kind dataset that is representative of loan-applicant friendly explanations. We design a novel Generative Adversarial Network (GAN) that can accommodate smaller datasets, to generate user-friendly textual explanations. We demonstrate how our system can also generate explanations serving different purposes: those that help educate the loan applicants, or help them take appropriate action towards a future approval. We hope that our contributions will aid the deployment of AI in financial services by serving the needs of the wider community of users seeking explanations.


Investigating Robustness and Interpretability of Link Prediction via Adversarial Modifications

arXiv.org Machine Learning

Representing entities and relations in an embedding space is a well-studied approach for machine learning on relational data. Existing approaches, however, primarily focus on improving accuracy and overlook other aspects such as robustness and interpretability. In this paper, we propose adversarial modifications for link prediction models: identifying the fact to add into or remove from the knowledge graph that changes the prediction for a target fact after the model is retrained. Using these single modifications of the graph, we identify the most influential fact for a predicted link and evaluate the sensitivity of the model to the addition of fake facts. We introduce an efficient approach to estimate the effect of such modifications by approximating the change in the embeddings when the knowledge graph changes. To avoid the combinatorial search over all possible facts, we train a network to decode embeddings to their corresponding graph components, allowing the use of gradient-based optimization to identify the adversarial modification. We use these techniques to evaluate the robustness of link prediction models (by measuring sensitivity to additional facts), study interpretability through the facts most responsible for predictions (by identifying the most influential neighbors), and detect incorrect facts in the knowledge base.


Embedding Multimodal Relational Data for Knowledge Base Completion

arXiv.org Artificial Intelligence

Representing entities and relations in an embedding space is a well-studied approach for machine learning on relational data. Existing approaches, however, primarily focus on simple link structure between a finite set of entities, ignoring the variety of data types that are often used in knowledge bases, such as text, images, and numerical values. In this paper, we propose multimodal knowledge base embeddings (MKBE) that use different neural encoders for this variety of observed data, and combine them with existing relational models to learn embeddings of the entities and multimodal data. Further, using these learned embedings and different neural decoders, we introduce a novel multimodal imputation model to generate missing multimodal values, like text and images, from information in the knowledge base. We enrich existing relational datasets to create two novel benchmarks that contain additional information such as textual descriptions and images of the original entities. We demonstrate that our models utilize this additional information effectively to provide more accurate link prediction, achieving state-of-the-art results with a considerable gap of 5-7% over existing methods. Further, we evaluate the quality of our generated multimodal values via a user study. We have release the datasets and the open-source implementation of our models at https://github.com/pouyapez/mkbe.


Compact Factorization of Matrices Using Generalized Round-Rank

arXiv.org Machine Learning

Matrix factorization is a well-studied task in machine learning for compactly representing large, noisy data. In our approach, instead of using the traditional concept of matrix rank, we define a new notion of link-rank based on a non-linear link function used within factorization. In particular, by applying the round function on a factorization to obtain ordinal-valued matrices, we introduce generalized round-rank (GRR). We show that not only are there many full-rank matrices that are low GRR, but further, that these matrices cannot be approximated well by low-rank linear factorization. We provide uniqueness conditions of this formulation and provide gradient descent-based algorithms. Finally, we present experiments on real-world datasets to demonstrate that the GRR-based factorization is significantly more accurate than linear factorization, while converging faster and using lower rank representations.