Goto

Collaborating Authors

 Pentland, Alex


Improved Learning in Evolution Strategies via Sparser Inter-Agent Network Topologies

arXiv.org Artificial Intelligence

We draw upon a previously largely untapped literature on human collective intelligence as a source of inspiration for improving deep learning. Implicit in many algorithms that attempt to solve Deep Reinforcement Learning (DRL) tasks is the network of processors along which parameter values are shared. So far, existing approaches have implicitly utilized fully-connected networks, in which all processors are connected. However, the scientific literature on human collective intelligence suggests that complete networks may not always be the most effective information network structures for distributed search through complex spaces. Here we show that alternative topologies can improve deep neural network training: we find that sparser networks learn higher rewards faster, leading to learning improvements at lower communication costs.


Stigmergy-based modeling to discover urban activity patterns from positioning data

arXiv.org Artificial Intelligence

Positioning data offer a remarkable source of information to analyze crowds urban dynamics. However, discovering urban activity patterns from the emergent behavior of crowds involves complex system modeling. An alternative approach is to adopt computational techniques belonging to the emergent paradigm, which enables self-organization of data and allows adaptive analysis. Specifically, our approach is based on stigmergy. By using stigmergy each sample position is associated with a digital pheromone deposit, which progressively evaporates and aggregates with other deposits according to their spatiotemporal proximity. Based on this principle, we exploit positioning data to identify high density areas (hotspots) and characterize their activity over time. This characterization allows the comparison of dynamics occurring in different days, providing a similarity measure exploitable by clustering techniques. Thus, we cluster days according to their activity behavior, discovering unexpected urban activity patterns. As a case study, we analyze taxi traces in New York City during 2015.


Learning Quadratic Games on Networks

arXiv.org Machine Learning

Individuals, or organizations, cooperate with or compete against one another in a wide range of practical situations. In the economics literature, such strategic interactions are often modeled as games played on networks, where an individual's payoff depends not only on her action but also that of her neighbors. The current literature has largely focused on analyzing the characteristics of network games in the scenario where the structure of the network, which is represented by a graph, is known beforehand. It is often the case, however, that the actions of the players are readily observable while the underlying interaction network remains hidden. In this paper, we propose two novel frameworks for learning, from the observations on individual actions, network games with linear-quadratic payoffs, and in particular the structure of the interaction network. Our frameworks are based on the Nash equilibrium of such games and involve solving a joint optimization problem for the graph structure and the individual marginal benefits. We test the proposed frameworks in synthetic settings and further study several factors that affect their learning performance. Moreover, with experiments on three real world examples, we show that our methods can effectively and more accurately learn the games than the baselines. The proposed approach is among the first of its kind for learning quadratic games, and have both theoretical and practical implications for understanding strategic interactions in a network environment.


Active Fairness in Algorithmic Decision Making

arXiv.org Artificial Intelligence

Society increasingly relies on machine learning models for automated decision making. Yet, efficiency gains from automation have come paired with concern for algorithmic discrimination that can systematize inequality. Substantial work in algorithmic fairness has surged, focusing on either post-processing trained models, constraining learning processes, or pre-processing training data. Recent work has proposed optimal post-processing methods that randomize classification decisions on a fraction of individuals in order to achieve fairness measures related to parity in errors and calibration. These methods, however, have raised concern due to the information inefficiency, intra-group unfairness, and Pareto sub-optimality they entail. The present work proposes an alternative active framework for fair classification, where, in deployment, a decision-maker adaptively acquires information according to the needs of different groups or individuals, towards balancing disparities in classification performance. We propose two such methods, where information collection is adapted to group- and individual-level needs respectively. We show on real-world datasets that these can achieve: 1) calibration and single error parity (e.g., equal opportunity); and 2) parity in both false positive and false negative rates (i.e., equal odds). Moreover, we show that, by leveraging their additional degree of freedom, active approaches can outperform randomization-based classifiers previously considered optimal, while also avoiding limitations such as intra-group unfairness.


Composite Social Network for Predicting Mobile Apps Installation

AAAI Conferences

We have carefully instrumented a large portion of the population living in a university graduate dormitory by giving participants Android smart phones running our sensing software. In this paper, we propose the novel problem of predicting mobile application (known as โ€œappsโ€) installation using social networks and explain its challenge. Modern smart phones, like the ones used in our study, are able to collect different social networks using built-in sensors. (e.g. Bluetooth proximity network, call log network, etc) While this information is accessible to app market makers such as the iPhone AppStore, it has not yet been studied how app market makers can use these information for marketing research and strategy development. We develop a simple computational model to better predict app installation by using a composite network computed from the different networks sensed by phones. Our model also captures individual variance and exogenous factors in app adoption. We show the importance of considering all these factors in predicting app installations, and we observe the surprising result that app installation is indeed predictable. We also show that our model achieves the best results compared with generic approaches.


On Reversing Jensen's Inequality

Neural Information Processing Systems

Jensen's inequality is a powerful mathematical tool and one of the workhorses in statistical learning. Its applications therein include the EM algorithm, Bayesian estimation and Bayesian inference. Jensen computes simple lower bounds on otherwise intractable quantities such as products of sums and latent log-likelihoods. This simplification then permits operations like integration and maximization. Quite often (i.e. in discriminative learning) upper bounds are needed as well. We derive and prove an efficient analytic inequality that provides such variational upper bounds. This inequality holds for latent variable mixtures of exponential family distributions and thus spans a wide range of contemporary statistical models. We also discuss applications of the upper bounds including maximum conditional likelihood, large margin discriminative models and conditional Bayesian inference. Convergence, efficiency and prediction results are shown.


On Reversing Jensen's Inequality

Neural Information Processing Systems

Jensen's inequality is a powerful mathematical tool and one of the workhorses in statistical learning. Its applications therein include the EM algorithm, Bayesian estimation and Bayesian inference. Jensen computes simplelower bounds on otherwise intractable quantities such as products of sums and latent log-likelihoods. This simplification then permits operationslike integration and maximization. Quite often (i.e. in discriminative learning) upper bounds are needed as well. We derive and prove an efficient analytic inequality that provides such variational upper bounds. This inequality holds for latent variable mixtures of exponential family distributions and thus spans a wide range of contemporary statistical models.We also discuss applications of the upper bounds including maximum conditional likelihood, large margin discriminative models and conditional Bayesian inference. Convergence, efficiency and prediction results are shown.


Maximum Conditional Likelihood via Bound Maximization and the CEM Algorithm

Neural Information Processing Systems

Advantages in feature selection, robustness andlimited resource allocation have been studied. Ultimately, tasks such as regression and classification reduce to the evaluation of a conditional density. However, popularity of maximumjoint likelihood and EM techniques remains strong in part due to their elegance and convergence properties. Thus, many conditional problems are solved by first estimating joint models then conditioning them.


Graphical Models for Recognizing Human Interactions

Neural Information Processing Systems

We describe a real-time computer vision and machine learning system for modeling and recognizing human behaviors in two different scenarios: (1) complex, twohanded action recognition in the martial art of Tai Chi and (2) detection and recognition of individual human behaviors and multiple-person interactions in a visual surveillance task. In the latter case, the system is particularly concerned with detecting when interactions between people occur, and classifying them. Graphical models, such as Hidden Markov Models (HMMs) [6] and Coupled Hidden Markov Models (CHMMs) [3, 2], seem appropriate for modeling and, classifying human behaviors because they offer dynamic time warping, a well-understood training algorithm, and a clear Bayesian semantics for both individual (HMMs) and interacting or coupled (CHMMs) generative processes. A major problem with this data-driven statistical approach, especially when modeling rare or anomalous behaviors, is the limited number of training examples. A major emphasis of our work, therefore, is on efficient Bayesian integration of both prior knowledge with evidence from data. We will show that for situations involving multiple independent (or partially independent) agents the Coupled HMM approach generates much better results than traditional HMM methods. In addition, we have developed a synthetic agent or Alife modeling environment for building and training flexible a priori models of various behaviors using software agents. Simulation with these software agents yields synthetic data that can be used to train prior models. These prior models can then be used recursively in a Bayesian framework to fit real behavioral data.


Bayesian Modeling of Facial Similarity

Neural Information Processing Systems

In previous work [6, 9, 10], we advanced a new technique for direct visual matching of images for the purposes of face recognition and image retrieval, using a probabilistic measure of similarity based primarily on a Bayesian (MAP) analysis of image differences, leadingto a "dual" basis similar to eigenfaces [13]. The performance advantage of this probabilistic matching technique over standard Euclidean nearest-neighbor eigenface matching was recently demonstrated using results from DARPA's 1996 "FERET" face recognition competition, in which this probabilistic matching algorithm was found to be the top performer. We have further developed a simple method of replacing the costly compution of nonlinear (online) Bayesian similarity measures by the relatively inexpensive computation of linear (offline) subspace projections and simple (online) Euclidean norms, thus resulting in a significant computational speedup for implementation with very large image databases as typically encountered in real-world applications.