Goto

Collaborating Authors

 Peng, Xiangyu


Dataset Quantization

arXiv.org Artificial Intelligence

State-of-the-art deep neural networks are trained with large amounts (millions or even billions) of data. The expensive computation and memory costs make it difficult to train them on limited hardware resources, especially for recent popular large language models (LLM) and computer vision models (CV). Recent popular dataset distillation methods are thus developed, aiming to reduce the number of training samples via synthesizing small-scale datasets via gradient matching. However, as the gradient calculation is coupled with the specific network architecture, the synthesized dataset is biased and performs poorly when used for training unseen architectures. To address these limitations, we present dataset quantization (DQ), a new framework to compress large-scale datasets into small subsets which can be used for training any neural network architectures. Extensive experiments demonstrate that DQ is able to generate condensed small datasets for training unseen network architectures with state-of-the-art compression ratios for lossless model training. To the best of our knowledge, DQ is the first method that can successfully distill large-scale datasets such as ImageNet-1k with a state-of-the-art compression ratio. Notably, with 60% data from ImageNet and 20% data from Alpaca's instruction tuning data, the models can be trained with negligible or no performance drop for both vision tasks (including classification, semantic segmentation, and object detection) as well as language tasks (including instruction tuning tasks such as BBH and DROP).


Thespian: Multi-Character Text Role-Playing Game Agents

arXiv.org Artificial Intelligence

Text-adventure games and text role-playing games are grand challenges for reinforcement learning game playing agents. Text role-playing games are open-ended environments where an agent must faithfully play a particular character. We consider the distinction between characters and actors, where an actor agent has the ability to play multiple characters. We present a framework we call a thespian agent that can learn to emulate multiple characters along with a soft prompt that can be used to direct it as to which character to play at any time. We further describe an attention mechanism that allows the agent to learn new characters that are based on previously learned characters in a few-shot fashion. We show that our agent outperforms the state of the art agent framework in multi-character learning and few-shot learning.


Ambient Adventures: Teaching ChatGPT on Developing Complex Stories

arXiv.org Artificial Intelligence

Imaginative play is an area of creativity that could allow robots to engage with the world around them in a much more personified way. Imaginary play can be seen as taking real objects and locations and using them as imaginary objects and locations in virtual scenarios. We adopted the story generation capability of large language models (LLMs) to obtain the stories used for imaginary play with human-written prompts. Those generated stories will be simplified and mapped into action sequences that can guide the agent in imaginary play. To evaluate whether the agent can successfully finish the imaginary play, we also designed a text adventure game to simulate a house as the playground for the agent to interact.


Dialogue Shaping: Empowering Agents through NPC Interaction

arXiv.org Artificial Intelligence

One major challenge in reinforcement learning (RL) is the large amount of steps for the RL agent needs to converge in the training process and learn the optimal policy, especially in text-based game environments where the action space is extensive. However, non-player characters (NPCs) sometimes hold some key information about the game, which can potentially help to train RL agents faster. Thus, this paper explores how to interact and converse with NPC agents to get the key information using large language models (LLMs), as well as incorporate this information to speed up RL agent's training using knowledge graphs (KGs) and Story Shaping.


Model ensemble instead of prompt fusion: a sample-specific knowledge transfer method for few-shot prompt tuning

arXiv.org Artificial Intelligence

Prompt tuning approaches, which learn task-specific soft prompts for a downstream task conditioning on frozen pre-trained models, have attracted growing interest due to its parameter efficiency. With large language models and sufficient training data, prompt tuning performs comparably to full-model tuning. However, with limited training samples in few-shot settings, prompt tuning fails to match the performance of full-model fine-tuning. In this work, we focus on improving the few-shot performance of prompt tuning by transferring knowledge from soft prompts of source tasks. Recognizing the good generalization capabilities of ensemble methods in low-data regime, we first experiment and show that a simple ensemble of model predictions based on different source prompts, outperforms existing multi-prompt knowledge transfer approaches such as source prompt fusion in the few-shot setting. Motivated by this observation, we further investigate model ensembles and propose Sample-specific Ensemble of Source Models (SESoM). SESoM learns to adjust the contribution of each source model for each target sample separately when ensembling source model outputs. Through this way, SESoM inherits the superior generalization of model ensemble approaches and simultaneously captures the sample-specific competence of each source prompt. We conduct experiments across a diverse set of eight NLP tasks using models of different scales (T5-{base, large, XL}) and find that SESoM consistently outperforms the existing models of the same as well as larger parametric scale by a large margin. Recent few years have witnessed the great success of large pre-trained language models (PLM) (Kenton & Toutanova, 2019; Liu et al., 2019; Radford et al., 2019; Raffel et al., 2020; Brown et al., 2020). The size of pre-trained models which can easily go to billions of parameters (Brown et al., 2020; Raffel et al., 2020), however, hinder their real-world deployments and applications. The huge size of pre-trained language models can make model fine-tuning for downstream NLP tasks computationally expensive and memory-inefficient. To alleviate this problem, many parameterefficient fine-tuning methods are proposed (Li & Liang, 2021; Houlsby et al., 2019; Zhang et al., 2021; Lester et al., 2021; Liu et al., 2021b). Among them, prompt tuning (Lester et al., 2021) is one of the most widely adopted methods.


Story Shaping: Teaching Agents Human-like Behavior with Stories

arXiv.org Artificial Intelligence

Reward design for reinforcement learning agents can be difficult in situations where one not only wants the agent to achieve some effect in the world but where one also cares about how that effect is achieved. For example, we might wish for an agent to adhere to a tacit understanding of commonsense, align itself to a preference for how to behave for purposes of safety, or taking on a particular role in an interactive game. Storytelling is a mode for communicating tacit procedural knowledge. We introduce a technique, Story Shaping, in which a reinforcement learning agent infers tacit knowledge from an exemplar story of how to accomplish a task and intrinsically rewards itself for performing actions that make its current environment adhere to that of the inferred story world. Specifically, Story Shaping infers a knowledge graph representation of the world state from observations, and also infers a knowledge graph from the exemplar story. An intrinsic reward is generated based on the similarity between the agent's inferred world state graph and the inferred story world graph. We conducted experiments in text-based games requiring commonsense reasoning and shaping the behaviors of agents as virtual game characters.


Neuro-Symbolic World Models for Adapting to Open World Novelty

arXiv.org Artificial Intelligence

Open-world novelty--a sudden change in the mechanics or properties of an environment--is a common occurrence in the real world. Novelty adaptation is an agent's ability to improve its policy performance post-novelty. Most reinforcement learning (RL) methods assume that the world is a closed, fixed process. Consequentially, RL policies adapt inefficiently to novelties. To address this, we introduce WorldCloner, an end-to-end trainable neuro-symbolic world model for rapid novelty adaptation. WorldCloner learns an efficient symbolic representation of the pre-novelty environment transitions, and uses this transition model to detect novelty and efficiently adapt to novelty in a single-shot fashion. Additionally, WorldCloner augments the policy learning process using imagination-based adaptation, where the world model simulates transitions of the post-novelty environment to help the policy adapt. By blending ''imagined'' transitions with interactions in the post-novelty environment, performance can be recovered with fewer total environment interactions. Using environments designed for studying novelty in sequential decision-making problems, we show that the symbolic world model helps its neural policy adapt more efficiently than model-based and model-based neural-only reinforcement learning methods.


Inherently Explainable Reinforcement Learning in Natural Language

arXiv.org Artificial Intelligence

We focus on the task of creating a reinforcement learning agent that is inherently explainable -- with the ability to produce immediate local explanations by thinking out loud while performing a task and analyzing entire trajectories post-hoc to produce causal explanations. This Hierarchically Explainable Reinforcement Learning agent (HEX-RL), operates in Interactive Fictions, text-based game environments in which an agent perceives and acts upon the world using textual natural language. These games are usually structured as puzzles or quests with long-term dependencies in which an agent must complete a sequence of actions to succeed -- providing ideal environments in which to test an agent's ability to explain its actions. Our agent is designed to treat explainability as a first-class citizen, using an extracted symbolic knowledge graph-based state representation coupled with a Hierarchical Graph Attention mechanism that points to the facts in the internal graph representation that most influenced the choice of actions. Experiments show that this agent provides significantly improved explanations over strong baselines, as rated by human participants generally unfamiliar with the environment, while also matching state-of-the-art task performance.


Detecting and Adapting to Novelty in Games

arXiv.org Artificial Intelligence

Open-world novelty occurs when the rules of an environment can change abruptly, such as when a game player encounters "house rules". To address open-world novelty, game playing agents must be able to detect when novelty is injected, and to quickly adapt to the new rules. We propose a model-based reinforcement learning approach where game state and rules are represented as knowledge graphs. The knowledge graph representation of the state and rules allows novelty to be detected as changes in the knowledge graph, assists with the training of deep reinforcement learners, and enables imagination-based re-training where the agent uses the knowledge graph to perform look-ahead.