Goto

Collaborating Authors

 Peng, Nanyun


COM2SENSE: A Commonsense Reasoning Benchmark with Complementary Sentences

arXiv.org Artificial Intelligence

Commonsense reasoning is intuitive for humans but has been a long-term challenge for artificial intelligence (AI). Recent advancements in pretrained language models have shown promising results on several commonsense benchmark datasets. However, the reliability and comprehensiveness of these benchmarks towards assessing model's commonsense reasoning ability remains unclear. To this end, we introduce a new commonsense reasoning benchmark dataset comprising natural language true/false statements, with each sample paired with its complementary counterpart, resulting in 4k sentence pairs. We propose a pairwise accuracy metric to reliably measure an agent's ability to perform commonsense reasoning over a given situation. The dataset is crowdsourced and enhanced with an adversarial model-in-the-loop setup to incentivize challenging samples. To facilitate a systematic analysis of commonsense capabilities, we design our dataset along the dimensions of knowledge domains, reasoning scenarios and numeracy. Experimental results demonstrate that our strongest baseline (UnifiedQA-3B), after fine-tuning, achieves ~71% standard accuracy and ~51% pairwise accuracy, well below human performance (~95% for both metrics). The dataset is available at https://github.com/PlusLabNLP/Com2Sense.


EventPlus: A Temporal Event Understanding Pipeline

arXiv.org Artificial Intelligence

We present EventPlus, a temporal event understanding pipeline that integrates various state-of-the-art event understanding components including event trigger and type detection, event argument detection, event duration and temporal relation extraction. Event information, especially event temporal knowledge, is a type of common sense knowledge that helps people understand how stories evolve and provides predictive hints for future events. EventPlus as the first comprehensive temporal event understanding pipeline provides a convenient tool for users to quickly obtain annotations about events and their temporal information for any user-provided document. Furthermore, we show EventPlus can be easily adapted to other domains (e.g., biomedical domain). We make EventPlus publicly available to facilitate event-related information extraction and downstream applications.


MrGCN: Mirror Graph Convolution Network for Relation Extraction with Long-Term Dependencies

arXiv.org Artificial Intelligence

The ability to capture complex linguistic structures and long-term dependencies among words in the passage is essential for many natural language understanding tasks. In relation extraction, dependency trees that contain rich syntactic clues have been widely used to help capture long-term dependencies in text. Graph neural networks (GNNs), one of the means to encode dependency graphs, has been shown effective in several prior works. However, relatively little attention has been paid to the receptive fields of GNNs, which can be crucial in tasks with extremely long text that go beyond single sentences and require discourse analysis. In this work, we leverage the idea of graph pooling and propose the Mirror Graph Convolution Network (MrGCN), a GNN model with pooling-unpooling structures tailored to relation extraction. The pooling branch reduces the graph size and enables the GCN to obtain larger receptive fields within less layers; the unpooling branch restores the pooled graph to its original resolution such that token-level relation extraction can be performed. Experiments on two datasets demonstrate the effectiveness of our method, showing significant improvements over previous results.


Detecting Social Media Manipulation in Low-Resource Languages

arXiv.org Artificial Intelligence

Social media have been deliberately used for malicious purposes, including political manipulation and disinformation. Most research focuses on high-resource languages. However, malicious actors share content across countries and languages, including low-resource ones. Here, we investigate whether and to what extent malicious actors can be detected in low-resource language settings. We discovered that a high number of accounts posting in Tagalog were suspended as part of Twitter's crackdown on interference operations after the 2016 US Presidential election. By combining text embedding and transfer learning, our framework can detect, with promising accuracy, malicious users posting in Tagalog without any prior knowledge or training on malicious content in that language. We first learn an embedding model for each language, namely a high-resource language (English) and a low-resource one (Tagalog), independently. Then, we learn a mapping between the two latent spaces to transfer the detection model. We demonstrate that the proposed approach significantly outperforms state-of-the-art models, including BERT, and yields marked advantages in settings with very limited training data-the norm when dealing with detecting malicious activity in online platforms.


Biomedical Event Extraction on Graph Edge-conditioned Attention Networks with Hierarchical Knowledge Graphs

arXiv.org Artificial Intelligence

Biomedical event extraction is critical in understanding biomolecular interactions described in scientific corpus. One of the main challenges is to identify nested structured events that are associated with non-indicative trigger words. We propose to incorporate domain knowledge from Unified Medical Language System (UMLS) to a pre-trained language model via Graph Edge-conditioned Attention Networks (GEANet) and hierarchical graph representation. To better recognize the trigger words, each sentence is first grounded to a sentence graph based on a jointly modeled hierarchical knowledge graph from UMLS. The grounded graphs are then propagated by GEANet, a novel graph neural networks for enhanced capabilities in inferring complex events. On BioNLP 2011 GENIA Event Extraction task, our approach achieved 1.41% F1 and 3.19% F1 improvements on all events and complex events, respectively. Ablation studies confirm the importance of GEANet and hierarchical KG.


Content Planning for Neural Story Generation with Aristotelian Rescoring

arXiv.org Artificial Intelligence

Long-form narrative text generated from large language models manages a fluent impersonation of human writing, but only at the local sentence level, and lacks structure or global cohesion. We posit that many of the problems of story generation can be addressed via high-quality content planning, and present a system that focuses on how to learn good plot structures to guide story generation. We utilize a plot-generation language model along with an ensemble of rescoring models that each implement an aspect of good story-writing as detailed in Aristotle's Poetics. We find that stories written with our more principled plot-structure are both more relevant to a given prompt and higher quality than baselines that do not content plan, or that plan in an unprincipled way.


Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

arXiv.org Artificial Intelligence

Commonsense question answering (QA) requires background knowledge which is not explicitly stated in a given context. Prior works use commonsense knowledge graphs (KGs) to obtain this knowledge for reasoning. However, relying entirely on these KGs may not suffice, considering their limited coverage and the contextual dependence of their knowledge. In this paper, we augment a general commonsense QA framework with a knowledgeable path generator. By extrapolating over existing paths in a KG with a state-of-the-art language model, our generator learns to connect a pair of entities in text with a dynamic, and potentially novel, multi-hop relational path. Such paths can provide structured evidence for solving commonsense questions without fine-tuning the path generator. Experiments on two datasets show the superiority of our method over previous works which fully rely on knowledge from KGs (with up to 6% improvement in accuracy), across various amounts of training data. Further evaluation suggests that the generated paths are typically interpretable, novel, and relevant to the task.


Domain Knowledge Empowered Structured Neural Net for End-to-End Event Temporal Relation Extraction

arXiv.org Artificial Intelligence

Extracting event temporal relations is a critical task for information extraction and plays an important role in natural language understanding. Prior systems leverage deep learning and pre-trained language models to improve the performance of the task. However, these systems often suffer from two short-comings: 1) when performing maximum a posteriori (MAP) inference based on neural models, previous systems only used structured knowledge that are assumed to be absolutely correct, i.e., hard constraints; 2) biased predictions on dominant temporal relations when training with a limited amount of data. To address these issues, we propose a framework that enhances deep neural network with distributional constraints constructed by probabilistic domain knowledge. We solve the constrained inference problem via Lagrangian Relaxation and apply it on end-to-end event temporal relation extraction tasks. Experimental results show our framework is able to improve the baseline neural network models with strong statistical significance on two widely used datasets in news and clinical domains.


$R^3$: Reverse, Retrieve, and Rank for Sarcasm Generation with Commonsense Knowledge

arXiv.org Artificial Intelligence

We propose an unsupervised approach for sarcasm generation based on a non-sarcastic input sentence. Our method employs a retrieve-and-edit framework to instantiate two major characteristics of sarcasm: reversal of valence and semantic incongruity with the context which could include shared commonsense or world knowledge between the speaker and the listener. While prior works on sarcasm generation predominantly focus on context incongruity, we show that combining valence reversal and semantic incongruity based on the commonsense knowledge generates sarcasm of higher quality. Human evaluation shows that our system generates sarcasm better than human annotators 34% of the time, and better than a reinforced hybrid baseline 90% of the time.


Identifying Cultural Differences through Multi-Lingual Wikipedia

arXiv.org Artificial Intelligence

Understanding cross-cultural differences is an important application of natural language understanding. This problem is difficult due to the relativism between cultures. We present a computational approach to learn cultural models that encode the general opinions and values of cultures from multi-lingual Wikipedia. Specifically, we assume a language is a symbol of a culture and different languages represent different cultures. Our model can automatically identify statements that potentially reflect cultural differences. Experiments on English and Chinese languages show that on a held out set of diverse topics, including marriage, gun control, democracy, etc., our model achieves high correlation with human judgements regarding within-culture values and cultural differences.