Plotting

 Peharz, Robert


Safe Semi-Supervised Learning of Sum-Product Networks

arXiv.org Machine Learning

In several domains obtaining class annotations is expensive while at the same time unlabelled data are abundant. While most semi-supervised approaches enforce restrictive assumptions on the data distribution, recent work has managed to learn semi-supervised models in a non-restrictive regime. However, so far such approaches have only been proposed for linear models. In this work, we introduce semi-supervised parameter learning for Sum-Product Networks (SPNs). SPNs are deep probabilistic models admitting inference in linear time in number of network edges. Our approach has several advantages, as it (1) allows generative and discriminative semi-supervised learning, (2) guarantees that adding unlabelled data can increase, but not degrade, the performance (safe), and (3) is computationally efficient and does not enforce restrictive assumptions on the data distribution. We show on a variety of data sets that safe semi-supervised learning with SPNs is competitive compared to state-of-the-art and can lead to a better generative and discriminative objective value than a purely supervised approach.


On the Latent Variable Interpretation in Sum-Product Networks

arXiv.org Artificial Intelligence

One of the central themes in Sum-Product networks (SPNs) is the interpretation of sum nodes as marginalized latent variables (LVs). This interpretation yields an increased syntactic or semantic structure, allows the application of the EM algorithm and to efficiently perform MPE inference. In literature, the LV interpretation was justified by explicitly introducing the indicator variables corresponding to the LVs' states. However, as pointed out in this paper, this approach is in conflict with the completeness condition in SPNs and does not fully specify the probabilistic model. We propose a remedy for this problem by modifying the original approach for introducing the LVs, which we call SPN augmentation. We discuss conditional independencies in augmented SPNs, formally establish the probabilistic interpretation of the sum-weights and give an interpretation of augmented SPNs as Bayesian networks. Based on these results, we find a sound derivation of the EM algorithm for SPNs. Furthermore, the Viterbi-style algorithm for MPE proposed in literature was never proven to be correct. We show that this is indeed a correct algorithm, when applied to selective SPNs, and in particular when applied to augmented SPNs. Our theoretical results are confirmed in experiments on synthetic data and 103 real-world datasets.


Exact Maximum Margin Structure Learning of Bayesian Networks

arXiv.org Machine Learning

Recently, there has been much interest in finding globally optimal Bayesian network structures. These techniques were developed for generative scores and can not be directly extended to discriminative scores, as desired for classification. In this paper, we propose an exact method for finding network structures maximizing the probabilistic soft margin, a successfully applied discriminative score. Our method is based on branch-and-bound techniques within a linear programming framework and maintains an any-time solution, together with worst-case sub-optimality bounds. We apply a set of order constraints for enforcing the network structure to be acyclic, which allows a compact problem representation and the use of general-purpose optimization techniques. In classification experiments, our methods clearly outperform generatively trained network structures and compete with support vector machines.