Plotting

 Peharz, Robert


Optimisation of Overparametrized Sum-Product Networks

arXiv.org Machine Learning

It seems to be a pearl of conventional wisdom that parameter learning in deep sum-product networks is surprisingly fast compared to shallow mixture models. This paper examines the effects of overparameterization in sum-product networks on the speed of parameter optimisation. Using theoretical analysis and empirical experiments, we show that deep sum-product networks exhibit an implicit acceleration compared to their shallow counterpart. In fact, gradient-based optimisation in deep tree-structured sum-product networks is equal to gradient ascend with adaptive and time-varying learning rates and additional momentum terms.


Bayesian Learning of Sum-Product Networks

arXiv.org Machine Learning

Sum-product networks (SPNs) are flexible density estimators and have received significant attention, due to their attractive inference properties. While parameter learning in SPNs is well developed, structure learning leaves something to be desired: Even though there is a plethora of SPN structure learners, most of them are somewhat ad-hoc, and based on intuition rather than a clear learning principle. In this paper, we introduce a well-principled Bayesian framework for SPN structure learning. First, we decompose the problem into i) laying out a basic computational graph, and ii) learning the so-called scope function over the graph. The first is rather unproblematic and akin to neural network architecture validation. The second characterises the effective structure of the SPN and needs to respect the usual structural constraints in SPN, i.e. completeness and decomposability. While representing and learning the scope function is rather involved in general, in this paper, we propose a natural parametrisation for an important and widely used special case of SPNs. These structural parameters are incorporated into a Bayesian model, such that simultaneous structure and parameter learning is cast into monolithic Bayesian posterior inference. In various experiments, our Bayesian SPNs often improve test likelihoods over greedy SPN learners. Further, since the Bayesian framework protects against overfitting, we are able to evaluate hyper-parameters directly on the Bayesian model score, waiving the need for a separate validation set, which is especially beneficial in low data regimes. Bayesian SPNs can be applied to heterogeneous domains and can easily be extended to nonparametric formulations. Moreover, our Bayesian approach is the first which consistently and robustly learns SPN structures under missing data.


Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures

arXiv.org Machine Learning

Bayesian networks are a central tool in machine learning and artificial intelligence, and make use of conditional independencies to impose structure on joint distributions. However, they are generally not as expressive as deep learning models and inference is hard and slow. In contrast, deep probabilistic models such as sum-product networks (SPNs) capture joint distributions in a tractable fashion, but use little interpretable structure. Here, we extend the notion of SPNs towards conditional distributions, which combine simple conditional models into high-dimensional ones. As shown in our experiments, the resulting conditional SPNs can be naturally used to impose structure on deep probabilistic models, allow for mixed data types, while maintaining fast and efficient inference.


Automatic Bayesian Density Analysis

arXiv.org Machine Learning

Making sense of a dataset in an automatic and unsupervised fashion is a challenging problem in statistics and AI. Classical approaches for {exploratory data analysis} are usually not flexible enough to deal with the uncertainty inherent to real-world data: they are often restricted to fixed latent interaction models and homogeneous likelihoods; they are sensitive to missing, corrupt and anomalous data; moreover, their expressiveness generally comes at the price of intractable inference. As a result, supervision from statisticians is usually needed to find the right model for the data. However, since domain experts are not necessarily also experts in statistics, we propose Automatic Bayesian Density Analysis (ABDA) to make exploratory data analysis accessible at large. Specifically, ABDA allows for automatic and efficient missing value estimation, statistical data type and likelihood discovery, anomaly detection and dependency structure mining, on top of providing accurate density estimation. Extensive empirical evidence shows that ABDA is a suitable tool for automatic exploratory analysis of mixed continuous and discrete tabular data.


SPFlow: An Easy and Extensible Library for Deep Probabilistic Learning using Sum-Product Networks

arXiv.org Machine Learning

We introduce SPFlow, an open-source Python library providing a simple interface to inference, learning and manipulation routines for deep and tractable probabilistic models called Sum-Product Networks (SPNs). The library allows one to quickly create SPNs both from data and through a domain specific language (DSL). It efficiently implements several probabilistic inference routines like computing marginals, conditionals and (approximate) most probable explanations (MPEs) along with sampling as well as utilities for serializing, plotting and structure statistics on an SPN. Moreover, many of the algorithms proposed in the literature to learn the structure and parameters of SPNs are readily available in SPFlow. Furthermore, SPFlow is extremely extensible and customizable, allowing users to promptly distill new inference and learning routines by injecting custom code into a lightweight functional-oriented API framework. This is achieved in SPFlow by keeping an internal Python representation of the graph structure that also enables practical compilation of an SPN into a TensorFlow graph, C, CUDA or FPGA custom code, significantly speeding-up computations.


Efficient and Robust Machine Learning for Real-World Systems

arXiv.org Machine Learning

While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation and the vision of the Internet-of-Things fuel the interest in resource efficient approaches. These approaches require a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. On top of this, it is crucial to treat uncertainty in a consistent manner in all but the simplest applications of machine learning systems. In particular, a desideratum for any real-world system is to be robust in the presence of outliers and corrupted data, as well as being `aware' of its limits, i.e.\ the system should maintain and provide an uncertainty estimate over its own predictions. These complex demands are among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology into every day's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. First we provide a comprehensive review of resource-efficiency in deep neural networks with focus on techniques for model size reduction, compression and reduced precision. These techniques can be applied during training or as post-processing and are widely used to reduce both computational complexity and memory footprint. As most (practical) neural networks are limited in their ways to treat uncertainty, we contrast them with probabilistic graphical models, which readily serve these desiderata by means of probabilistic inference. In that way, we provide an extensive overview of the current state-of-the-art of robust and efficient machine learning for real-world systems.


Minimal Random Code Learning: Getting Bits Back from Compressed Model Parameters

arXiv.org Machine Learning

While deep neural networks are a highly successful model class, their large memory footprint puts considerable strain on energy consumption, communication bandwidth, and storage requirements. Consequently, model size reduction has become an utmost goal in deep learning. A typical approach is to train a set of deterministic weights, while applying certain techniques such as pruning and quantization, in order that the empirical weight distribution becomes amenable to Shannon-style coding schemes. However, as shown in this paper, relaxing weight determinism and using a full variational distribution over weights allows for more efficient coding schemes and consequently higher compression rates. In particular, following the classical bits-back argument, we encode the network weights using a random sample, requiring only a number of bits corresponding to the Kullback-Leibler divergence between the sampled variational distribution and the encoding distribution. By imposing a constraint on the Kullback-Leibler divergence, we are able to explicitly control the compression rate, while optimizing the expected loss on the training set. The employed encoding scheme can be shown to be close to the optimal information-theoretical lower bound, with respect to the employed variational family. Our method sets new state-of-the-art in neural network compression, as it strictly dominates previous approaches in a Pareto sense: On the benchmarks LeNet-5/MNIST and VGG-16/CIFAR-10, our approach yields the best test performance for a fixed memory budget, and vice versa, it achieves the highest compression rates for a fixed test performance.


Learning Deep Mixtures of Gaussian Process Experts Using Sum-Product Networks

arXiv.org Machine Learning

While Gaussian processes (GPs) are the method of choice for regression tasks, they also come with practical difficulties, as inference cost scales cubic in time and quadratic in memory. In this paper, we introduce a natural and expressive way to tackle these problems, by incorporating GPs in sum-product networks (SPNs), a recently proposed tractable probabilistic model allowing exact and efficient inference. In particular, by using GPs as leaves of an SPN we obtain a novel flexible prior over functions, which implicitly represents an exponentially large mixture of local GPs. Exact and efficient posterior inference in this model can be done in a natural interplay of the inference mechanisms in GPs and SPNs. Thereby, each GP is -- similarly as in a mixture of experts approach -- responsible only for a subset of data points, which effectively reduces inference cost in a divide and conquer fashion. We show that integrating GPs into the SPN framework leads to a promising probabilistic regression model which is: (1) computational and memory efficient, (2) allows efficient and exact posterior inference, (3) is flexible enough to mix different kernel functions, and (4) naturally accounts for non-stationarities in time series. In a variate of experiments, we show that the SPN-GP model can learn input dependent parameters and hyper-parameters and is on par with or outperforms the traditional GPs as well as state of the art approximations on real-world data.


Probabilistic Deep Learning using Random Sum-Product Networks

arXiv.org Machine Learning

Probabilistic deep learning currently receives an increased interest, as consistent treatment of uncertainty is one of the most important goals in machine learning and AI. Most current approaches, however, have severe limitations concerning inference. Sum-Product networks (SPNs), although having excellent properties in that regard, have so far not been explored as serious deep learning models, likely due to their special structural requirements. In this paper, we make a drastic simplification and use a random structure which is trained in a "classical deep learning manner" such as automatic differentiation, SGD, and GPU support. The resulting models, called RAT-SPNs, yield comparable prediction results to deep neural networks, but maintain well-calibrated uncertainty estimates which makes them highly robust against missing data. Furthermore, they successfully capture uncertainty over their inputs in a convincing manner, yielding robust outlier and peculiarity detection.


Sum-Product Autoencoding: Encoding and Decoding Representations Using Sum-Product Networks

AAAI Conferences

Sum-Product Networks (SPNs) are a deep probabilistic architecture that up to now has been successfully employed for tractable inference. Here, we extend their scope towards unsupervised representation learning: we encode samples into continuous and categorical embeddings and show that they can also be decoded back into the original input space by leveraging MPE inference. We characterize when this Sum-Product Autoencoding (SPAE) leads to equivalent reconstructions and extend it towards dealing with missing embedding information. Our experimental results on several multi-label classification problems demonstrate that SPAE is competitive with state-of-the-art autoencoder architectures, even if the SPNs were never trained to reconstruct their inputs.