Plotting

 Pedrielli, Giulia


AttenGluco: Multimodal Transformer-Based Blood Glucose Forecasting on AI-READI Dataset

arXiv.org Artificial Intelligence

Diabetes is a chronic metabolic disorder characterized by persistently high blood glucose levels (BGLs), leading to severe complications such as cardiovascular disease, neuropathy, and retinopathy. Predicting BGLs enables patients to maintain glucose levels within a safe range and allows caregivers to take proactive measures through lifestyle modifications. Continuous Glucose Monitoring (CGM) systems provide real-time tracking, offering a valuable tool for monitoring BGLs. However, accurately forecasting BGLs remains challenging due to fluctuations due to physical activity, diet, and other factors. Recent deep learning models show promise in improving BGL prediction. Nonetheless, forecasting BGLs accurately from multimodal, irregularly sampled data over long prediction horizons remains a challenging research problem. In this paper, we propose AttenGluco, a multimodal Transformer-based framework for long-term blood glucose prediction. AttenGluco employs cross-attention to effectively integrate CGM and activity data, addressing challenges in fusing data with different sampling rates. Moreover, it employs multi-scale attention to capture long-term dependencies in temporal data, enhancing forecasting accuracy. To evaluate the performance of AttenGluco, we conduct forecasting experiments on the recently released AIREADI dataset, analyzing its predictive accuracy across different subject cohorts including healthy individuals, people with prediabetes, and those with type 2 diabetes. Furthermore, we investigate its performance improvements and forgetting behavior as new cohorts are introduced. Our evaluations show that AttenGluco improves all error metrics, such as root mean square error (RMSE), mean absolute error (MAE), and correlation, compared to the multimodal LSTM model. AttenGluco outperforms this baseline model by about 10% and 15% in terms of RMSE and MAE, respectively.


Parameter Optimization with Conscious Allocation (POCA)

arXiv.org Machine Learning

The performance of modern machine learning algorithms depends upon the selection of a set of hyperparameters. Common examples of hyperparameters are learning rate and the number of layers in a dense neural network. Auto-ML is a branch of optimization that has produced important contributions in this area. Within Auto-ML, hyperband-based approaches, which eliminate poorly-performing configurations after evaluating them at low budgets, are among the most effective. However, the performance of these algorithms strongly depends on how effectively they allocate the computational budget to various hyperparameter configurations. We present the new Parameter Optimization with Conscious Allocation (POCA), a hyperband-based algorithm that adaptively allocates the inputted budget to the hyperparameter configurations it generates following a Bayesian sampling scheme. We compare POCA to its nearest competitor at optimizing the hyperparameters of an artificial toy function and a deep neural network and find that POCA finds strong configurations faster in both settings.


Part-X: A Family of Stochastic Algorithms for Search-Based Test Generation with Probabilistic Guarantees

arXiv.org Artificial Intelligence

Requirements driven search-based testing (also known as falsification) has proven to be a practical and effective method for discovering erroneous behaviors in Cyber-Physical Systems. Despite the constant improvements on the performance and applicability of falsification methods, they all share a common characteristic. Namely, they are best-effort methods which do not provide any guarantees on the absence of erroneous behaviors (falsifiers) when the testing budget is exhausted. The absence of finite time guarantees is a major limitation which prevents falsification methods from being utilized in certification procedures. In this paper, we address the finite-time guarantees problem by developing a new stochastic algorithm. Our proposed algorithm not only estimates (bounds) the probability that falsifying behaviors exist, but also it identifies the regions where these falsifying behaviors may occur. We demonstrate the applicability of our approach on standard benchmark functions from the optimization literature and on the F16 benchmark problem.