Pecora, Federico
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
Configuration Planning with Multiple Dynamic Goals
Rocco, Maurizio Di (Örebro University Center for Applied Autonomous Sensor Systems) | Pecora, Federico (Örebro University Center for Applied Autonomous Sensor Systems) | Sivakumar, Prasanna Kumar (Örebro University Center for Applied Autonomous Sensor Systems) | Saffiotti, Alessandro (Örebro University Center for Applied Autonomous Sensor Systems)
We propose an approach to configuration planning for robotic systems in which plans are represented as constraint networks and planning is defined as search in the space of such networks. The approach supports reasoning about time, resources, and information dependencies between actions. In addition, the system can leverage the flexibility of such networks at execution time to support dynamic goal posting and re-planning.
An Ontology-based Multi-level Robot Architecture for Learning from Experiences
Rockel, Sebastian (University of Hamburg) | Neumann, Bernd (University of Hamburg) | Zhang, Jianwei (University of Hamburg) | Dubba, Sandeep Krishna Reddy (University of Leeds) | Cohn, Anthony G. (University of Leeds) | Konecny, Stefan (Örebro University) | Mansouri, Masoumeh (Örebro University) | Pecora, Federico (Örebro University) | Saffiotti, Alessandro (Örebro University) | Günther, Martin (University of Osnabrück) | Stock, Sebastian (University of Osnabrück) | Hertzberg, Joachim (University of Osnabrück) | Tome, Ana Maria (University of Aveiro ) | Pinho, Armando (University of Aveiro) | Lopes, Luis Seabra (University of Aveiro ) | Riegen, Stephanie von (HITeC e.V. ) | Hotz, Lothar (HITeC e.V.)
One way to improve the robustness and flexibility of robot performance is to let the robot learn from its experiences. In this paper, we describe the architecture and knowledge-representation framework for a service robot being developed in the EU project RACE, and present examples illustrating how learning from experiences will be achieved. As a unique innovative feature, the framework combines memory records of low-level robot activities with ontology-based high-level semantic descriptions.