Pavlovic, Vladimir
Deep Crowd-Flow Prediction in Built Environments
Sohn, Samuel S., Moon, Seonghyeon, Zhou, Honglu, Yoon, Sejong, Pavlovic, Vladimir, Kapadia, Mubbasir
Predicting the behavior of crowds in complex environments is a key requirement in a multitude of application areas, including crowd and disaster management, architectural design, and urban planning. Given a crowd's immediate state, current approaches simulate crowd movement to arrive at a future state. However, most applications require the ability to predict hundreds of possible simulation outcomes (e.g., under different environment and crowd situations) at real-time rates, for which these approaches are prohibitively expensive. In this paper, we propose an approach to instantly predict the long-term flow of crowds in arbitrarily large, realistic environments. Central to our approach is a novel CAGE representation consisting of Capacity, Agent, Goal, and Environment-oriented information, which efficiently encodes and decodes crowd scenarios into compact, fixed-size representations that are environmentally lossless. We present a framework to facilitate the accurate and efficient prediction of crowd flow in never-before-seen crowd scenarios. We conduct a series of experiments to evaluate the efficacy of our approach and showcase positive results.
Deep Cooking: Predicting Relative Food Ingredient Amounts from Images
Li, Jiatong, Guerrero, Ricardo, Pavlovic, Vladimir
In this paper, we study the novel problem of not only predicting ingredients from a food image, but also predicting the relative amounts of the detected ingredients. We propose two prediction-based models using deep learning that output sparse and dense predictions, coupled with important semi-automatic multi-database integrative data pre-processing, to solve the problem. Experiments on a dataset of recipes collected from the Internet show the models generate encouraging experimental results.
Bayes-Factor-VAE: Hierarchical Bayesian Deep Auto-Encoder Models for Factor Disentanglement
Kim, Minyoung, Wang, Yuting, Sahu, Pritish, Pavlovic, Vladimir
We propose a family of novel hierarchical Bayesian deep auto-encoder models capable of identifying disentangled factors of variability in data. While many recent attempts at factor disentanglement have focused on sophisticated learning objectives within the VAE framework, their choice of a standard normal as the latent factor prior is both suboptimal and detrimental to performance. Our key observation is that the disentangled latent variables responsible for major sources of variability, the relevant factors, can be more appropriately modeled using long-tail distributions. The typical Gaussian priors are, on the other hand, better suited for modeling of nuisance factors. Motivated by this, we extend the VAE to a hierarchical Bayesian model by introducing hyper-priors on the variances of Gaussian latent priors, mimicking an infinite mixture, while maintaining tractable learning and inference of the traditional VAEs. This analysis signifies the importance of partitioning and treating in a different manner the latent dimensions corresponding to relevant factors and nuisances. Our proposed models, dubbed Bayes-Factor-VAEs, are shown to outperform existing methods both quantitatively and qualitatively in terms of latent disentanglement across several challenging benchmark tasks.
Efficient Deep Gaussian Process Models for Variable-Sized Input
Laradji, Issam H., Schmidt, Mark, Pavlovic, Vladimir, Kim, Minyoung
Deep Gaussian processes (DGP) have appealing Bayesian properties, can handle variable-sized data, and learn deep features. Their limitation is that they do not scale well with the size of the data. Existing approaches address this using a deep random feature (DRF) expansion model, which makes inference tractable by approximating DGPs. However, DRF is not suitable for variable-sized input data such as trees, graphs, and sequences. We introduce the GP-DRF, a novel Bayesian model with an input layer of GPs, followed by DRF layers. The key advantage is that the combination of GP and DRF leads to a tractable model that can both handle a variable-sized input as well as learn deep long-range dependency structures of the data. We provide a novel efficient method to simultaneously infer the posterior of GP's latent vectors and infer the posterior of DRF's internal weights and random frequencies. Our experiments show that GP-DRF outperforms the standard GP model and DRF model across many datasets. Furthermore, they demonstrate that GP-DRF enables improved uncertainty quantification compared to GP and DRF alone, with respect to a Bhattacharyya distance assessment. Source code is available at https://github.com/IssamLaradji/GP_DRF.
The Art of Food: Meal Image Synthesis from Ingredients
Han, Fangda, Guerrero, Ricardo, Pavlovic, Vladimir
In this work we propose a new computational framework, based on generative deep models, for synthesis of photo-realistic food meal images from textual descriptions of its ingredients. Previous works on synthesis of images from text typically rely on pre-trained text models to extract text features, followed by a generative neural networks (GANs) aimed to generate realistic images conditioned on the text features. These works mainly focus on generating spatially compact and well-defined categories of objects, such as birds or flowers. In contrast, meal images are significantly more complex, consisting of multiple ingredients whose appearance and spatial qualities are further modified by cooking methods. We propose a method that first builds an attention-based ingredients-image association model, which is then used to condition a generative neural network tasked with synthesizing meal images. Furthermore, a cycle-consistent constraint is added to further improve image quality and control appearance. Extensive experiments show our model is able to generate meal image corresponding to the ingredients, which could be used to augment existing dataset for solving other computational food analysis problems.
Unsupervised Visual Domain Adaptation: A Deep Max-Margin Gaussian Process Approach
Kim, Minyoung, Sahu, Pritish, Gholami, Behnam, Pavlovic, Vladimir
In unsupervised domain adaptation, it is widely known that the target domain error can be provably reduced by having a shared input representation that makes the source and target domains indistinguishable from each other. Very recently it has been studied that not just matching the marginal input distributions, but the alignment of output (class) distributions is also critical. The latter can be achieved by minimizing the maximum discrepancy of predictors (classifiers). In this paper, we adopt this principle, but propose a more systematic and effective way to achieve hypothesis consistency via Gaussian processes (GP). The GP allows us to define/induce a hypothesis space of the classifiers from the posterior distribution of the latent random functions, turning the learning into a simple large-margin posterior separation problem, far easier to solve than previous approaches based on adversarial minimax optimization. We formulate a learning objective that effectively pushes the posterior to minimize the maximum discrepancy. This is further shown to be equivalent to maximizing margins and minimizing uncertainty of the class predictions in the target domain, a well-established principle in classical (semi-)supervised learning. Empirical results demonstrate that our approach is comparable or superior to the existing methods on several benchmark domain adaptation datasets.
Relevance Factor VAE: Learning and Identifying Disentangled Factors
Kim, Minyoung, Wang, Yuting, Sahu, Pritish, Pavlovic, Vladimir
We propose a novel VAE-based deep auto-encoder model that can learn disentangled latent representations in a fully unsupervised manner, endowed with the ability to identify all meaningful sources of variation and their cardinality. Our model, dubbed Relevance-Factor-VAE, leverages the total correlation (TC) in the latent space to achieve the disentanglement goal, but also addresses the key issue of existing approaches which cannot distinguish between meaningful and nuisance factors of latent variation, often the source of considerable degradation in disentanglement performance. We tackle this issue by introducing the so-called relevance indicator variables that can be automatically learned from data, together with the VAE parameters. Our model effectively focuses the TC loss onto the relevant factors only by tolerating large prior KL divergences, a desideratum justified by our semi-parametric theoretical analysis. Using a suite of disentanglement metrics, including a newly proposed one, as well as qualitative evidence, we demonstrate that our model outperforms existing methods across several challenging benchmark datasets.
The Role of Data-Driven Priors in Multi-Agent Crowd Trajectory Estimation
Qiao, Gang (Rutgers University) | Yoon, Sejong (The College of New Jersey) | Kapadia, Mubbasir (Rutgers University) | Pavlovic, Vladimir (Rutgers University)
Resource constraints frequently complicate multi-agent planning problems. Existing algorithms for resource-constrained, multi-agent planning problems rely on the assumption that the constraints are deterministic. However, frequently resource constraints are themselves subject to uncertainty from external influences. Uncertainty about constraints is especially challenging when agents must execute in an environment where communication is unreliable, making on-line coordination difficult. In those cases, it is a significant challenge to find coordinated allocations at plan time depending on availability at run time. To address these limitations, we propose to extend algorithms for constrained multi-agent planning problems to handle stochastic resource constraints. We show how to factorize resource limit uncertainty and use this to develop novel algorithms to plan policies for stochastic constraints. We evaluate the algorithms on a search-and-rescue problem and on a power-constrained planning domain where the resource constraints are decided by nature. We show that plans taking into account all potential realizations of the constraint obtain significantly better utility than planning for the expectation, while causing fewer constraint violations.
Unsupervised Domain Adaptation with Copula Models
Tran, Cuong D., Rudovic, Ognjen, Pavlovic, Vladimir
We study the task of unsupervised domain adaptation, where no labeled data from the target domain is provided during training time. To deal with the potential discrepancy between the source and target distributions, both in features and labels, we exploit a copula-based regression framework. The benefits of this approach are two-fold: (a) it allows us to model a broader range of conditional predictive densities beyond the common exponential family, (b) we show how to leverage Sklar's theorem, the essence of the copula formulation relating the joint density to the copula dependency functions, to find effective feature mappings that mitigate the domain mismatch. By transforming the data to a copula domain, we show on a number of benchmark datasets (including human emotion estimation), and using different regression models for prediction, that we can achieve a more robust and accurate estimation of target labels, compared to recently proposed feature transformation (adaptation) methods.
Robust Time-Series Retrieval Using Probabilistic Adaptive Segmental Alignment
Shariat, Shahriar, Pavlovic, Vladimir
Traditional pairwise sequence alignment is based on matching individual samples from two sequences, under time monotonicity constraints. However, in many application settings matching subsequences (segments) instead of individual samples may bring in additional robustness to noise or local non-causal perturbations. This paper presents an approach to segmental sequence alignment that jointly segments and aligns two sequences, generalizing the traditional per-sample alignment. To accomplish this task, we introduce a distance metric between segments based on average pairwise distances and then present a modified pair-HMM (PHMM) that incorporates the proposed distance metric to solve the joint segmentation and alignment task. We also propose a relaxation to our model that improves the computational efficiency of the generic segmental PHMM. Our results demonstrate that this new measure of sequence similarity can lead to improved classification performance, while being resilient to noise, on a variety of sequence retrieval problems, from EEG to motion sequence classification.