Goto

Collaborating Authors

 Pasteris, Stephen


Online Learning of Facility Locations

arXiv.org Machine Learning

In this paper we consider an online learning version of the Facility location problem where users need to be served one at a time in a sequence of trials. The goal is to select, at each trial, a subset of a given set of sites, and then pay a loss equal to their total "opening cost" plus the minimum "connection cost" for connecting the user to one of the sites in the subset. More precisely, we are given a set of N sites. At the beginning of each trial, an opening cost and a connection cost for the arriving user are associated with each site and are unknown. At each trial, the learner has to select a subset of sites and incurs a loss given by the minimum connection cost over the selected sites plus the sum of the opening costs of all selected sites. After each subset selection, the opening and connection costs of all sites are revealed. To solve this problem, we design and rigorously analyse an algorithm which belongs to the class of online learning algorithms that make use of the Exponentiated gradient method [15]. We measure, and rigorously analyse, the performance of our method by comparing its cumulative loss with that of any fixed subset of sites.


MaxHedge: Maximising a Maximum Online

arXiv.org Machine Learning

We introduce a new online learning framework where, at each trial, the learner is required to select a subset of actions from a given known action set. Each action is associated with an energy value, a reward and a cost. The sum of the energies of the actions selected cannot exceed a given energy budget. The goal is to maximise the cumulative profit, where the profit obtained on a single trial is defined as the difference between the maximum reward among the selected actions and the sum of their costs. Action energy values and the budget are known and fixed. All rewards and costs associated with each action change over time and are revealed at each trial only after the learner's selection of actions. Our framework encompasses several online learning problems where the environment changes over time; and the solution trades-off between minimising the costs and maximising the maximum reward of the selected subset of actions, while being constrained to an action energy budget. The algorithm that we propose is efficient and general in that it may be specialised to multiple natural online combinatorial problems.


Online Matrix Completion with Side Information

arXiv.org Machine Learning

We give an online algorithm and prove novel mistake and regret bounds for online binary matrix completion with side information. The bounds we prove are of the form $\tilde{\mathcal{O}}({\mathcal{D}}/{\gamma^2})$. The term ${1}/{\gamma^2}$ is analogous to the usual margin term in SVM (perceptron) bounds. More specifically, if we assume that there is some factorization of the underlying $m\times n$ matrix into $\mathbf{P} \mathbf{Q}^{\top}$ where the rows of $\mathbf{P}$ are interpreted as ``classifiers'' in $\Re^d$ and the rows of $\mathbf{Q}$ as ``instances'' in $\Re^d$, then $\gamma$ is is the maximum (normalized) margin over all factorizations $\mathbf{P} \mathbf{Q}^{\top}$ consistent with the observed matrix. The quasi-dimension term $\mathcal{D}$ measures the quality of side information. In the presence of no side information, $\mathcal{D} = m+n$. However, if the side information is predictive of the underlying factorization of the matrix, then in the best case, $\mathcal{D} \in \mathcal{O}(k + \ell)$ where $k$ is the number of distinct row factors and $\ell$ is the number of distinct column factors. We additionally provide a generalization of our algorithm to the inductive setting. In this setting, the side information is not specified in advance. The results are similar to the transductive setting but in the best case, the quasi-dimension $\mathcal{D}$ is now bounded by $\mathcal{O}(k^2 + \ell^2)$.


Mistake Bounds for Binary Matrix Completion

Neural Information Processing Systems

We study the problem of completing a binary matrix in an online learning setting. On each trial we predict a matrix entry and then receive the true entry. We propose a Matrix Exponentiated Gradient algorithm [1] to solve this problem. We provide a mistake bound for the algorithm, which scales with the margin complexity [2, 3] of the underlying matrix. The bound suggests an interpretation where each row of the matrix is a prediction task over a finite set of objects, the columns. Using this we show that the algorithm makes a number of mistakes which is comparable up to a logarithmic factor to the number of mistakes made by the Kernel Perceptron with an optimal kernel in hindsight. We discuss applications of the algorithm to predicting as well as the best biclustering and to the problem of predicting the labeling of a graph without knowing the graph in advance.


Online Prediction at the Limit of Zero Temperature

Neural Information Processing Systems

We design an online algorithm to classify the vertices of a graph. Underpinning the algorithm is the probability distribution of an Ising model isomorphic to the graph. Each classification is based on predicting the label with maximum marginal probability in the limit of zero-temperature with respect to the labels and vertices seen so far. Computing these classifications is unfortunately based on a $\#P$-complete problem. This motivates us to develop an algorithm for which we give a sequential guarantee in the online mistake bound framework. Our algorithm is optimal when the graph is a tree matching the prior results in [1].For a general graph, the algorithm exploits the additional connectivity over a tree to provide a per-cluster bound. The algorithm is efficient as the cumulative time to sequentially predict all of the vertices of the graph is quadratic in the size of the graph.


A Time and Space Efficient Junction Tree Architecture

arXiv.org Artificial Intelligence

The junction tree algorithm is a way of computing marginals of boolean multivariate probability distributions that factorise over sets of random variables. The junction tree algorithm first constructs a tree called a junction tree who's vertices are sets of random variables. The algorithm then performs a generalised version of belief propagation on the junction tree. The Shafer-Shenoy and Hugin architectures are two ways to perform this belief propagation that tradeoff time and space complexities in different ways: Hugin propagation is at least as fast as Shafer-Shenoy propagation and in the cases that we have large vertices of high degree is significantly faster. However, this speed increase comes at the cost of an increased space complexity. This paper first introduces a simple novel architecture, ARCH-1, which has the best of both worlds: the speed of Hugin propagation and the low space requirements of Shafer-Shenoy propagation. A more complicated novel architecture, ARCH-2, is then introduced which has, up to a factor only linear in the maximum cardinality of any vertex, time and space complexities at least as good as ARCH-1 and in the cases that we have large vertices of high degree is significantly faster than ARCH-1.


Online Sum-Product Computation Over Trees

Neural Information Processing Systems

We consider the problem of performing efficient sum-product computations in an online setting over a tree. A natural application of our methods is to compute the marginal distribution at a vertex in a tree-structured Markov random field. Belief propagation can be used to solve this problem, but requires time linear in the size of the tree, and is therefore too slow in an online setting where we are continuously receiving new data and computing individual marginals. With our method we aim to update the data and compute marginals in time that is no more than logarithmic in the size of the tree, and is often significantly less. We accomplish this via a hierarchical covering structure that caches previous local sum-product computations. Our contribution is threefold: we i) give a linear time algorithm to find an optimal hierarchical cover of a tree; ii) give a sum-productlike algorithmto efficiently compute marginals with respect to this cover; and iii) apply "i" and "ii" to find an efficient algorithm with a regret bound for the online allocation problem in a multi-task setting.