Passerini, Andrea
Few-Shot Unsupervised Continual Learning through Meta-Examples
Bertugli, Alessia, Vincenzi, Stefano, Calderara, Simone, Passerini, Andrea
In real-world applications, data do not reflect the ones commonly used for neural networks training, since they are usually few, unlabeled and can be available as a stream. Hence many existing deep learning solutions suffer from a limited range of applications, in particular in the case of online streaming data that evolve over time. To narrow this gap, in this work we introduce a novel and complex setting involving unsupervised meta-continual learning with unbalanced tasks. These tasks are built through a clustering procedure applied to a fitted embedding space. We exploit a meta-learning scheme that simultaneously alleviates catastrophic forgetting and favors the generalization to new tasks. Moreover, to encourage feature reuse during the meta-optimization, we exploit a single inner loop taking advantage of an aggregated representation achieved through the use of a self-attention mechanism. Experimental results on few-shot learning benchmarks show competitive performance even compared to the supervised case. Additionally, we empirically observe that in an unsupervised scenario, the small tasks and the variability in the clusters pooling play a crucial role in the generalization capability of the network. Further, on complex datasets, the exploitation of more clusters than the true number of classes leads to higher results, even compared to the ones obtained with full supervision, suggesting that a predefined partitioning into classes can miss relevant structural information.
Efficient Generation of Structured Objects with Constrained Adversarial Networks
Di Liello, Luca, Ardino, Pierfrancesco, Gobbi, Jacopo, Morettin, Paolo, Teso, Stefano, Passerini, Andrea
Generative Adversarial Networks (GANs) struggle to generate structured objects like molecules and game maps. The issue is that structured objects must satisfy hard requirements (e.g., molecules must be chemically valid) that are difficult to acquire from examples alone. As a remedy, we propose Constrained Adversarial Networks (CANs), an extension of GANs in which the constraints are embedded into the model during training. This is achieved by penalizing the generator proportionally to the mass it allocates to invalid structures. In contrast to other generative models, CANs support efficient inference of valid structures (with high probability) and allows to turn on and off the learned constraints at inference time. CANs handle arbitrary logical constraints and leverage knowledge compilation techniques to efficiently evaluate the disagreement between the model and the constraints. Our setup is further extended to hybrid logical-neural constraints for capturing very complex constraints, like graph reachability. An extensive empirical analysis shows that CANs efficiently generate valid structures that are both high-quality and novel.
Constructive Preference Elicitation over Hybrid Combinatorial Spaces
Dragone, Paolo, Teso, Stefano, Passerini, Andrea
Preference elicitation is the task of suggesting a highly preferred configuration to a decision maker. The preferences are typically learned by querying the user for choice feedback over pairs or sets of objects. In its constructive variant, new objects are synthesized "from scratch" by maximizing an estimate of the user utility over a combinatorial (possibly infinite) space of candidates. In the constructive setting, most existing elicitation techniques fail because they rely on exhaustive enumeration of the candidates. A previous solution explicitly designed for constructive tasks comes with no formal performance guarantees, and can be very expensive in (or unapplicable to) problems with non-Boolean attributes. We propose the Choice Perceptron, a Perceptron-like algorithm for learning user preferences from set-wise choice feedback over constructive domains and hybrid Boolean-numeric feature spaces. We provide a theoretical analysis on the attained regret that holds for a large class of query selection strategies, and devise a heuristic strategy that aims at optimizing the regret in practice. Finally, we demonstrate its effectiveness by empirical evaluation against existing competitors on constructive scenarios of increasing complexity.
Decomposition Strategies for Constructive Preference Elicitation
Dragone, Paolo (University of Trento) | Teso, Stefano (KU Leuven) | Kumar, Mohit (KU Leuven) | Passerini, Andrea (University of Trento)
We tackle the problem of constructive preference elicitation, that is the problem of learning user preferences over verylarge decision problems, involving a combinatorial space of possible outcomes. In this setting, the suggested configuration is synthesized on-the-fly by solving a constrained optimization problem, while the preferences are learned iteratively by interacting with the user. Previous work has shown that Coactive Learning is a suitable method for learning userpreferences in constructive scenarios. In Coactive Learning the user provides feedback to the algorithm in the form of an improvement to a suggested configuration. When the problem involves many decision variables and constraints, this type of interaction poses a significant cognitive burden on the user. We propose a decomposition technique for large preference-based decision problems relying exclusively on inference and feedback over partial configurations. This has the clear advantage of drastically reducing the user cognitive load. Additionally, part-wise inference can be (up to exponentially) less computationally demanding than inference over full configurations. We discuss the theoretical implications of working with parts and present promising empirical results on one synthetic and two realistic constructive problems.
Constructive Preference Elicitation Over Hybrid Combinatorial Spaces
Dragone, Paolo (University of Trento) | Teso, Stefano (KU Leuven) | Passerini, Andrea (University of Trento)
Peference elicitation is the task of suggesting a highly preferred configuration to a decision maker. The preferences are typically learned by querying the user for choice feedback over pairs or sets of objects. In its constructive variant, new objects are synthesized "from scratch" by maximizing an estimate of the user utility over a combinatorial (possibly infinite) space of candidates. In the constructive setting, most existing elicitation techniques fail because they rely on exhaustive enumeration of the candidates. A previous solution explicitly designed for constructive tasks comes with no formal performance guarantees, and can be very expensive in (or unapplicable to) problems with non-Boolean attributes. We propose the Choice Perceptron, a Perceptron-like algorithm for learning user preferences from set-wise choice feedback over constructive domains and hybrid Boolean-numeric feature spaces. We provide a theoretical analysis on the attained regret that holds for a large class of query selection strategies, and devise a heuristic strategy that aims at optimizing the regret in practice. Finally, we demonstrate its effectiveness by empirical evaluation against existing competitors on constructive scenarios of increasing complexity.
Decomposition Strategies for Constructive Preference Elicitation
Dragone, Paolo, Teso, Stefano, Kumar, Mohit, Passerini, Andrea
We tackle the problem of constructive preference elicitation, that is the problem of learning user preferences over very large decision problems, involving a combinatorial space of possible outcomes. In this setting, the suggested configuration is synthesized on-the-fly by solving a constrained optimization problem, while the preferences are learned itera tively by interacting with the user. Previous work has shown that Coactive Learning is a suitable method for learning user preferences in constructive scenarios. In Coactive Learning the user provides feedback to the algorithm in the form of an improvement to a suggested configuration. When the problem involves many decision variables and constraints, this type of interaction poses a significant cognitive burden on the user. We propose a decomposition technique for large preference-based decision problems relying exclusively on inference and feedback over partial configurations. This has the clear advantage of drastically reducing the user cognitive load. Additionally, part-wise inference can be (up to exponentially) less computationally demanding than inference over full configurations. We discuss the theoretical implications of working with parts and present promising empirical results on one synthetic and two realistic constructive problems.
Coactive Critiquing: Elicitation of Preferences and Features
Teso, Stefano (University of Trento) | Dragone, Paolo (University of Trento) | Passerini, Andrea (University of Trento)
When faced with complex choices, users refine their own preference criteria as they explore the catalogue of options. In this paper we propose an approach to preference elicitation suited for this scenario. We extend Coactive Learning, which iteratively collects manipulative feedback, to optionally query example critiques. User critiques are integrated into the learning model by dynamically extending the feature space. Our formulation natively supports constructive learning tasks, where the option catalogue is generated on-the-fly. We present an upper bound on the average regret suffered bythe learner. Our empirical analysis highlights the promise of our approach.
Interpretability in Linear Brain Decoding
Kia, Seyed Mostafa, Passerini, Andrea
Improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of brain decoding models. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, we present a simple definition for interpretability of linear brain decoding models. Then, we propose to combine the interpretability and the performance of the brain decoding into a new multi-objective criterion for model selection. Our preliminary results on the toy data show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative linear models. The presented definition provides the theoretical background for quantitative evaluation of interpretability in linear brain decoding.
Constructive Preference Elicitation by Setwise Max-margin Learning
Teso, Stefano, Passerini, Andrea, Viappiani, Paolo
In this paper we propose an approach to preference elicitation that is suitable to large configuration spaces beyond the reach of existing state-of-the-art approaches. Our setwise max-margin method can be viewed as a generalization of max-margin learning to sets, and can produce a set of "diverse" items that can be used to ask informative queries to the user. Moreover, the approach can encourage sparsity in the parameter space, in order to favor the assessment of utility towards combinations of weights that concentrate on just few features. We present a mixed integer linear programming formulation and show how our approach compares favourably with Bayesian preference elicitation alternatives and easily scales to realistic datasets.
Component Caching in Hybrid Domains with Piecewise Polynomial Densities
Belle, Vaishak (KU Leuven) | Broeck, Guy Van den (University of California, Los Angeles) | Passerini, Andrea (University of Trento)
Counting the models of a propositional formula is an important problem: for example, it serves as the backbone of probabilistic inference by weighted model counting. A key algorithmic insight is component caching (CC), in which disjoint components of a formula, generated dynamically during a DPLL search, are cached so that they only have to be solved once. In the recent years, driven by SMT technology and probabilistic inference in hybrid domains, there is an increasing interest in counting the models of linear arithmetic sentences. To date, however, solvers for these are block-clause implementations, which are nonviable on large problem instances. In this paper, as a first step in extending CC to hybrid domains, we show how propositional CC systems can be leveraged when limited to piecewise polynomial densities. Our experiments demonstrate a large gap in performance when compared to existing approaches based on a variety of block-clause strategies.