Passarella, Andrea
Structural invariants and semantic fingerprints in the "ego network" of words
Ollivier, Kilian, Boldrini, Chiara, Passarella, Andrea, Conti, Marco
Well-established cognitive models coming from anthropology have shown that, due to the cognitive constraints that limit our "bandwidth" for social interactions, humans organize their social relations according to a regular structure. In this work, we postulate that similar regularities can be found in other cognitive processes, such as those involving language production. In order to investigate this claim, we analyse a dataset containing tweets of a heterogeneous group of Twitter users (regular users and professional writers). Leveraging a methodology similar to the one used to uncover the well-established social cognitive constraints, we find regularities at both the structural and semantic level. At the former, we find that a concentric layered structure (which we call ego network of words, in analogy to the ego network of social relationships) very well captures how individuals organise the words they use. The size of the layers in this structure regularly grows (approximately 2-3 times with respect to the previous one) when moving outwards, and the two penultimate external layers consistently account for approximately 60% and 30% of the used words, irrespective of the number of the total number of layers of the user. For the semantic analysis, each ring of each ego network is described by a semantic profile, which captures the topics associated with the words in the ring. We find that ring #1 has a special role in the model. It is semantically the most dissimilar and the most diverse among the rings. We also show that the topics that are important in the innermost ring also have the characteristic of being predominant in each of the other rings, as well as in the entire ego network. In this respect, ring #1 can be seen as the semantic fingerprint of the ego network of words.
Compensating for Sensing Failures via Delegation in Human-AI Hybrid Systems
Fuchs, Andrew, Passarella, Andrea, Conti, Marco
Given an increasing prevalence of intelligent systems capable of autonomous actions or augmenting human activities, it is important to consider scenarios in which the human, autonomous system, or both can exhibit failures as a result of one of several contributing factors (e.g. perception). Failures for either humans or autonomous agents can lead to simply a reduced performance level, or a failure can lead to something as severe as injury or death. For our topic, we consider the hybrid human-AI teaming case where a managing agent is tasked with identifying when to perform a delegation assignment and whether the human or autonomous system should gain control. In this context, the manager will estimate its best action based on the likelihood of either (human, autonomous) agent failure as a result of their sensing capabilities and possible deficiencies. We model how the environmental context can contribute to, or exacerbate, the sensing deficiencies. These contexts provide cases where the manager must learn to attribute capabilities to suitability for decision-making. As such, we demonstrate how a Reinforcement Learning (RL) manager can correct the context-delegation association and assist the hybrid team of agents in outperforming the behavior of any agent working in isolation.
A Cognitive Framework for Delegation Between Error-Prone AI and Human Agents
Fuchs, Andrew, Passarella, Andrea, Conti, Marco
With humans interacting with AI-based systems at an increasing rate, it is necessary to ensure the artificial systems are acting in a manner which reflects understanding of the human. In the case of humans and artificial AI agents operating in the same environment, we note the significance of comprehension and response to the actions or capabilities of a human from an agent's perspective, as well as the possibility to delegate decisions either to humans or to agents, depending on who is deemed more suitable at a certain point in time. Such capabilities will ensure an improved responsiveness and utility of the entire human-AI system. To that end, we investigate the use of cognitively inspired models of behavior to predict the behavior of both human and AI agents. The predicted behavior, and associated performance with respect to a certain goal, is used to delegate control between humans and AI agents through the use of an intermediary entity. As we demonstrate, this allows overcoming potential shortcomings of either humans or agents in the pursuit of a goal.
Harnessing the Power of Ego Network Layers for Link Prediction in Online Social Networks
Toprak, Mustafa, Boldrini, Chiara, Passarella, Andrea, Conti, Marco
Being able to recommend links between users in online social networks is important for users to connect with like-minded individuals as well as for the platforms themselves and third parties leveraging social media information to grow their business. Predictions are typically based on unsupervised or supervised learning, often leveraging simple yet effective graph topological information, such as the number of common neighbors. However, we argue that richer information about personal social structure of individuals might lead to better predictions. In this paper, we propose to leverage well-established social cognitive theories to improve link prediction performance. According to these theories, individuals arrange their social relationships along, on average, five concentric circles of decreasing intimacy. We postulate that relationships in different circles have different importance in predicting new links. In order to validate this claim, we focus on popular feature-extraction prediction algorithms (both unsupervised and supervised) and we extend them to include social-circles awareness. We validate the prediction performance of these circle-aware algorithms against several benchmarks (including their baseline versions as well as node-embedding- and GNN-based link prediction), leveraging two Twitter datasets comprising a community of video gamers and generic users. We show that social-awareness generally provides significant improvements in the prediction performance, beating also state-of-the-art solutions like node2vec and SEAL, and without increasing the computational complexity. Finally, we show that social-awareness can be used in place of using a classifier (which may be costly or impractical) for targeting a specific category of users.