Goto

Collaborating Authors

 Parr, Ronald


Generalized Prioritized Sweeping

Neural Information Processing Systems

Prioritized sweeping is a model-based reinforcement learning method that attempts to focus an agent's limited computational resources to achieve a good estimate of the value of environment states. To choose effectively where to spend a costly planning step, classic prioritized sweeping uses a simple heuristic to focus computation on the states that are likely to have the largest errors. In this paper, we introduce generalized prioritized sweeping, a principled method for generating such estimates in a representation-specific manner. This allows us to extend prioritized sweeping beyond an explicit, state-based representation to deal with compact representations that are necessary for dealing with large state spaces. We apply this method for generalized model approximators (such as Bayesian networks), and describe preliminary experiments that compare our approach with classical prioritized sweeping.


Reinforcement Learning with Hierarchies of Machines

Neural Information Processing Systems

We present a new approach to reinforcement learning in which the policies considered by the learning process are constrained by hierarchies of partially specified machines. This allows for the use of prior knowledge to reduce the search space and provides a framework in which knowledge can be transferred across problems and in which component solutions can be recombined to solve larger and more complicated problems. Our approach can be seen as providing a link between reinforcement learning and "behavior-based" or "teleo-reactive" approaches to control. We present provably convergent algorithms for problem-solving and learning with hierarchical machines and demonstrate their effectiveness on a problem with several thousand states.


Reinforcement Learning with Hierarchies of Machines

Neural Information Processing Systems

We present a new approach to reinforcement learning in which the policies consideredby the learning process are constrained by hierarchies of partially specified machines. This allows for the use of prior knowledge to reduce the search space and provides a framework in which knowledge can be transferred across problems and in which component solutions can be recombined to solve larger and more complicated problems. Our approach can be seen as providing a link between reinforcement learning and"behavior-based" or "teleo-reactive" approaches to control. We present provably convergent algorithms for problem-solving and learning withhierarchical machines and demonstrate their effectiveness on a problem with several thousand states.