Park, Seongmin
NN-LUT: Neural Approximation of Non-Linear Operations for Efficient Transformer Inference
Yu, Joonsang, Park, Junki, Park, Seongmin, Kim, Minsoo, Lee, Sihwa, Lee, Dong Hyun, Choi, Jungwook
Non-linear operations such as GELU, Layer normalization, and Softmax are essential yet costly building blocks of Transformer models. Several prior works simplified these operations with look-up tables or integer computations, but such approximations suffer inferior accuracy or considerable hardware cost with long latency. This paper proposes an accurate and hardware-friendly approximation framework for efficient Transformer inference. Our framework employs a simple neural network as a universal approximator with its structure equivalently transformed into a LUT. The proposed framework called NN-LUT can accurately replace all the non-linear operations in popular BERT models with significant reductions in area, power consumption, and latency.
Finetuning Pretrained Transformers into Variational Autoencoders
Park, Seongmin, Lee, Jihwa
Text variational autoencoders (VAEs) are notorious for posterior collapse, a phenomenon where the model's decoder learns to ignore signals from the encoder. Because posterior collapse is known to be exacerbated by expressive decoders, Transformers have seen limited adoption as components of text VAEs. Existing studies that incorporate Transformers into text VAEs (Li et al., 2020; Fang et al., 2021) mitigate posterior collapse using massive pretraining, a technique unavailable to most of the research community without extensive computing resources. We present a simple two-phase training scheme to convert a sequence-to-sequence Transformer into a VAE with just finetuning. The resulting language model is competitive with massively pretrained Transformer-based VAEs in some internal metrics while falling short on others. To facilitate training we comprehensively explore the impact of common posterior collapse alleviation techniques in the literature. We release our code for reproducability.