Goto

Collaborating Authors

 Parhi, Rahul


Neural Networks, Ridge Splines, and TV Regularization in the Radon Domain

arXiv.org Machine Learning

We develop a variational framework to understand the properties of the functions learned by neural networks fit to data. We propose and study a family of continuous-domain linear inverse problems with total variation-like regularization in the Radon domain subject to data fitting constraints. We derive a representer theorem showing that finite-width, singlehidden layer neural networks are solutions to these inverse problems. We draw on many techniques from variational spline theory and so we propose the notion of polynomial ridge splines, which correspond to a single-hidden layer neural networks with truncated power functions as the activation function. The representer theorem is reminiscent of the classical reproducing kernel Hilbert space representer theorem, but we show that the neural network problem is posed over a non-Hilbertian Banach space. While the learning problems are posed in the continuous-domain, similar to kernel methods, the problems can be recast as finite-dimensional neural network training problems. These neural network training problems have regularizers which are related to the well-known weight decay and path-norm regularizers. Thus, our result gives insight into functional characteristics of trained neural networks and also into the design neural network regularizers. We also show that these regularizers promote neural network solutions with desirable generalization properties.


Minimum "Norm" Neural Networks are Splines

arXiv.org Machine Learning

We develop a general framework based on splines to understand the interpolation properties of overparameterized neural networks. We prove that minimum "norm" two-layer neural networks (with appropriately chosen activation functions) that interpolate scattered data are minimal knot splines. Our results follow from understanding key relationships between notions of neural network "norms", linear operators, and continuous-domain linear inverse problems.