Not enough data to create a plot.
Try a different view from the menu above.
Parasa, Sravanthi
Mask-conditioned latent diffusion for generating gastrointestinal polyp images
Macháček, Roman, Mozaffari, Leila, Sepasdar, Zahra, Parasa, Sravanthi, Halvorsen, Pål, Riegler, Michael A., Thambawita, Vajira
In order to take advantage of AI solutions in endoscopy diagnostics, we must overcome the issue of limited annotations. These limitations are caused by the high privacy concerns in the medical field and the requirement of getting aid from experts for the time-consuming and costly medical data annotation process. In computer vision, image synthesis has made a significant contribution in recent years as a result of the progress of generative adversarial networks (GANs) and diffusion probabilistic models (DPM). Novel DPMs have outperformed GANs in text, image, and video generation tasks. Therefore, this study proposes a conditional DPM framework to generate synthetic GI polyp images conditioned on given generated segmentation masks. Our experimental results show that our system can generate an unlimited number of high-fidelity synthetic polyp images with the corresponding ground truth masks of polyps. To test the usefulness of the generated data, we trained binary image segmentation models to study the effect of using synthetic data. Results show that the best micro-imagewise IOU of 0.7751 was achieved from DeepLabv3+ when the training data consists of both real data and synthetic data. However, the results reflect that achieving good segmentation performance with synthetic data heavily depends on model architectures.
Literature-Augmented Clinical Outcome Prediction
Naik, Aakanksha, Parasa, Sravanthi, Feldman, Sergey, Wang, Lucy Lu, Hope, Tom
Predictive models for medical outcomes hold great promise for enhancing clinical decision-making. These models are trained on rich patient data such as clinical notes, aggregating many patient signals into an outcome prediction. However, AI-based clinical models have typically been developed in isolation from the prominent paradigm of Evidence Based Medicine (EBM), in which medical decisions are based on explicit evidence from existing literature. In this work, we introduce techniques to help bridge this gap between EBM and AI-based clinical models, and show that these methods can improve predictive accuracy. We propose a novel system that automatically retrieves patient-specific literature based on intensive care (ICU) patient information, aggregates relevant papers and fuses them with internal admission notes to form outcome predictions. Our model is able to substantially boost predictive accuracy on three challenging tasks in comparison to strong recent baselines; for in-hospital mortality, we are able to boost top-10% precision by a large margin of over 25%.