Plotting

 Panthaplackel, Sheena


Unsupervised Evaluation of Code LLMs with Round-Trip Correctness

arXiv.org Artificial Intelligence

To evaluate code large language models (LLMs), research has relied on a few small manually curated benchmarks, such as HumanEval and MBPP, which represent a narrow part of the real-world software domains. In this work, we introduce round-trip correctness (RTC) as an alternative evaluation method. RTC allows Code LLM evaluation on a broader spectrum of real-world software domains without the need for costly human curation. RTC rests on the idea that we can ask a model to make a prediction (e.g., describe some code using natural language), feed that prediction back (e.g., synthesize code from the predicted description), and check if this round-trip leads to code that is semantically equivalent to the original input. We show how to employ RTC to evaluate code synthesis and editing. We find that RTC strongly correlates with model performance on existing narrow-domain code synthesis benchmarks while allowing us to expand to a much broader set of domains and tasks which was not previously possible without costly human annotations.


Deep Just-In-Time Inconsistency Detection Between Comments and Source Code

arXiv.org Artificial Intelligence

Natural language comments convey key aspects of source code such as implementation, usage, and pre- and post-conditions. Failure to update comments accordingly when the corresponding code is modified introduces inconsistencies, which is known to lead to confusion and software bugs. In this paper, we aim to detect whether a comment becomes inconsistent as a result of changes to the corresponding body of code, in order to catch potential inconsistencies just-in-time, i.e., before they are committed to a version control system. To achieve this, we develop a deep-learning approach that learns to correlate a comment with code changes. By evaluating on a large corpus of comment/code pairs spanning various comment types, we show that our model outperforms multiple baselines by significant margins. For extrinsic evaluation, we show the usefulness of our approach by combining it with a comment update model to build a more comprehensive automatic comment maintenance system which can both detect and resolve inconsistent comments based on code changes.


Copy that! Editing Sequences by Copying Spans

arXiv.org Machine Learning

Neural sequence-to-sequence models are finding increasing use in editing of documents, for example in correcting a text document or repairing source code. In this paper, we argue that common seq2seq models (with a facility to copy single tokens) are not a natural fit for such tasks, as they have to explicitly copy each unchanged token. We present an extension of seq2seq models capable of copying entire spans of the input to the output in one step, greatly reducing the number of decisions required during inference. This extension means that there are now many ways of generating the same output, which we handle by deriving a new objective for training and a variation of beam search for inference that explicitly handle this problem. In our experiments on a range of editing tasks of natural language and source code, we show that our new model consistently outperforms simpler baselines.