Goto

Collaborating Authors

 Pang, Yan


PrivMVMF: Privacy-Preserving Multi-View Matrix Factorization for Recommender Systems

arXiv.org Artificial Intelligence

With an increasing focus on data privacy, there have been pilot studies on recommender systems in a federated learning (FL) framework, where multiple parties collaboratively train a model without sharing their data. Most of these studies assume that the conventional FL framework can fully protect user privacy. However, there are serious privacy risks in matrix factorization in federated recommender systems based on our study. This paper first provides a rigorous theoretical analysis of the server reconstruction attack in four scenarios in federated recommender systems, followed by comprehensive experiments. The empirical results demonstrate that the FL server could infer users' information with accuracy >80% based on the uploaded gradients from FL nodes. The robustness analysis suggests that our reconstruction attack analysis outperforms the random guess by >30% under Laplace noises with b no larger than 0.5 for all scenarios. Then, the paper proposes a new privacy-preserving framework based on homomorphic encryption, Privacy-Preserving Multi-View Matrix Factorization (PrivMVMF), to enhance user data privacy protection in federated recommender systems. The proposed PrivMVMF is successfully implemented and tested thoroughly with the MovieLens dataset.


Graph Decipher: A transparent dual-attention graph neural network to understand the message-passing mechanism for the node classification

arXiv.org Artificial Intelligence

Graph neural networks can be effectively applied to find solutions for many real-world problems across widely diverse fields. The success of graph neural networks is linked to the message-passing mechanism on the graph, however, the message-aggregating behavior is still not entirely clear in most algorithms. To improve functionality, we propose a new transparent network called Graph Decipher to investigate the message-passing mechanism by prioritizing in two main components: the graph structure and node attributes, at the graph, feature, and global levels on a graph under the node classification task. However, the computation burden now becomes the most significant issue because the relevance of both graph structure and node attributes are computed on a graph. In order to solve this issue, only relevant representative node attributes are extracted by graph feature filters, allowing calculations to be performed in a category-oriented manner. Experiments on seven datasets show that Graph Decipher achieves state-of-the-art performance while imposing a substantially lower computation burden under the node classification task. Additionally, since our algorithm has the ability to explore the representative node attributes by category, it is utilized to alleviate the imbalanced node classification problem on multi-class graph datasets.